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Comment

Fred L. Bookstein

The elegant metric geometry of David Kendall’s
shape spaces 2%, is inherited from the Euclidean met-
ric of the spaces R™ containing the original point data.
In the applications he has sketched here, the points
in R™ are independent and identically distributed (iid)
and the metric in shape space, in turn, is symmetric
in the points, a sort of spherical distance. Point data
generated in other disciplines, however, are not always
iid; different metrics may be appropriate to those
applications. In this comment I justify a certain analy-
sis of small regions of Kendall’s shape space by using
a metric quite different from the usual Euclidean-
derived version, depict its relation to Kendall’s metric
and indicate the sort of inquiries it permits.

Morphometrics is the quantitative description of
biological form. Its data can often be usefully modeled
as sets of labeled points, or landmarks, that corre-
spond for biological reasons from organism to orga-
nism of a sample (Bookstein, 1986). We say that these
,points are biologically homologous among a series of
forms: they have identities—names—as well as loca-
tions in some Cartesian coordinate system. Any set of
landmark locations has a “size” and a “shape” that
may be construed according to Kendall’s definitions.
But the biological relations among different instances
of such configurations partake of a feature space not
effectively represented by the metric inherited from
RZor R®. ‘
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In the biological context, my style of statistical
analysis of shapes proceeds, as Kendall pointed out in
1986, within a tangent space of his 2% or 2% in the
vicinity of a sample “mean form.” (Small (1988) has
an interesting comment on this construction.) The
questions that in Kendall’s applications are asked of
an entire shape space—questions about concentration
upon the “collinearity set,” and the like—are replaced
in morphometric applications by the more familiar
concerns of multivariate statistical analysis: differ-
ences of mean shape, covariances involving shape or
factors that may underlie shape variation.

In the linearization of Kendall’s shape space that
applies to this tangent structure, the natural shape
metric is an algebraic transformation of the “Pro-
crustes metric,” the ordinary summed squared Euclid-
ean distance of two-point configurations after an
appropriate optimizing rotation and scaling. But the
Procrustes approach is not flexible enough fairly to
represent biological structure within the context of
multivariate statistical analysis. If two landmarks are
typically close together, like the pupil of the eye and
the outer corner, then we expect them to move to-
gether in their relation to more distant structures. The
half-width and the orientation of the eye are more
tightly controlled by diverse biological processes of
regulation than is, say, the distance from the eye to
the chin. These considerations lead one naturally to
search out a shape metric that weights changes in
small distances more heavily than changes in larger
ones. In 1985, David Ragozin of the University of
Washington suggested to me that the formalism of
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