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Comment: Who Will Solve the Secretary

Problem?

Stephen M. Samuels

Just like Johannes Kepler, who threw a new curve
at the solar system, Tom Ferguson has given a dif-
ferent slant to the Secretary Problem. To its many
practitioners who ritually begin by saying “all that we
can observe are the relative ranks,” Ferguson (citing
historical precedent), in effect, responds “let’s not take
that assumption for granted.” The heart of his paper,
as I see it, is the following Ferguson Secretary Problem:
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Given n, either find an exchangeable sequence of
continuous random variables, X;, X,, ---, X,, for
which, among all stopping rules, 7, based on the X’s,

sup P{X, = max(X;, X;, ---, X,)}
is achieved by a rule based only on the relative ranks
of the X’s—or prove that no such sequence exists.

Ferguson has come within epsilon of solving this
problem. He has exhibited exchangeable sequences,
for each n and ¢ > 0, such that the best rule based
only on relative ranks has success probability within
¢ of the supremum. But he has left open the question
of whether this supremum can actually be attained.

For n = 2, the answer is easy; there is no such-:

sequence. The following elementary argument, which
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