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Rejoinder

Robert E. Kass

I am very grateful to the discussants for their com-
ments, which have substantially enriched the material
presented here. The remarks of Professors Amari,
Barndorff-Nielsen, and Reid and Fraser require no
reply. I do, however, wish to answer the specific quer-
ies raised by Professors Bernardo and Rao.

With regard to Rao’s query (1), concerning charac-
terizations of the information metric, I would refer
interested readers to the original work of Centsov
(1972) and the newer work of Picard (1989). I am not
sure what Rao has in mind in his query (2) about the
choice of affine connection. Part of the answer may
come from the results-of Centsov and Picard, but if
Professor Rao is referring to the choice of « in the
a-connection, perhaps helpful to the intuition is
the observation in Kass (1984) that vanishing of the
a-connection coefficients when o = —1, =%, 0, 1
occurs for the bias-reducing, skewness-reducing,
variance-stabilizing, and natural parameterizations,
respectively, and when a = V3, it occurs for the para-
meterization in which the expected values of the third
derivatives of the loglikelihood vanish. These para-
meterizations were characterized in differential equa-
tion form, in the one-parameter case, by Hougaard
(1982). There is also a very nice answer to part of
Rao’s query (3), due to Amari (1985, 1987a). In brief,
Amari used higher derivatives of the imbedding 5(-),
defining a curved exponential family, to define both
higher-order curvatures and appropriate statistics
based on higher-order derivatives of the loglikeli-
hood function. With these he obtained a complete
decomposition of the information in the sample as
an asymptotic expansion with geometrically-
interpretable terms of decreasing order associated
with the loglikelihood derivatives.
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Finally, Professor Rao’s point (4), and Professor
Bernardo’s request for comments in the rejoinder,
concern Jeffreys’ general rule for choosing a prior. 1
have a few things to say about this, though for the
sake of brevity I will not try to argue my opinions in
detail.

As a preliminary remark, I emphasize that by “ref-
erence prior” I mean a prior chosen according to any
formal rule that may be applied without detailed con-
sideration of the data-analytic context. Such a prior
need not be considered “noninformative” in any well-
defined sense. This is an important point, since it is
dubious that the concepts of ignorance and lack of
information can be given satisfactory definitions. I
believe the idea of selecting a prior by convention, as
a “standard of reference,” analogous to choosing
a standard of reference in other scientific settings,
is due to Jeffreys (1955) page 277. This notion

_and terminology was adopted by Box and Tiao (1973)

page 23. Unfortunately, Bernardo (1979) used the
term “reference prior” for a specific rule, rather than
the general concept, and this occasionally causes
confusion.

There is great convenience in conventional choices,
throughout statistics and throughout science. But con-
venience should not be confused with necessity: one
might say that conventions are useful as long as they
are not taken too seriously. Thus, I see the conven-
ience in reference priors, just as I recognize the con-
venience in conventional levels of significance. In
applications, however, such conveniences must be
questioned. Sometimes they are justifiable time-
savers, especially for communicating results, but often
they are not. I consider reference priors to be “default”
choices, but they are to be used only when their
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