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where the Y;’s and Z are independent Gaussian
processes with covariance functions o;(x; — w;) and
a.(x — w) respectively, so that

cov(Y(x), Y(w)) = ¥ a;(x; — w;) + o.(x — w).

One specific parametric form of this model that might
be worth exploring is

cov(Y(x), Y(w))
= 3 Gyl wy — 51V Koley | w0y — 35])
+ D [1Bilwj — % 1)K, (B; | wj — x;]).

A large C; would correspond to an important main
effect. The model for Z(-) is somewhat problematic
as it allows Z(-) to have an additive component.
Following the decomposition into main effects and
interactions from Section 6 of the article by Sacks,
Welch, Mitchell and Wynn, it might be more satisfy-
ing to define Z(-) to be a stochastic process with no
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additive component:

Z(x) =Z*x) — X f Z*(x) II dxn

h#j

+(d-1) fZ*(x)dx,

where d is the number of dimensions of x and Z*(x)
is a Gaussian process with some simple covariance
function. I think it would be very interesting to find
optimal designs under some models of the general
form given by (1). If the optimal designs are very
different from those obtained by Sacks, Welch, Mitch-
ell and Wynn for their models, that would call into
question the effectiveness of their designs for proc-
esses where most of the variation can be explained by
main effects.
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We thank the discussants for their incisive com-
ments, suggestions and questions. Nearly all the dis-
cussants have been key participants at the workshops
mentioned by Johnson and Ylvisaker; all have been
instrumental in the development of new methodol-
ogies for the design and analysis of computer experi-
ments. Most of the comments and our responses are
concerned with the choice of the experimental design
and the choice of the correlation function.

We had hoped that the example of Section 6 would
attract some suggestions from the discussants, and in
this we are not disappointed. Morris’ results on the
first-stage, 16-point design are interesting—in partic-
ular, they indicate that the concentration of the design
in the center of the region also occurs for the much
rougher process corresponding to p = 1 in (9). As this
is only a preliminary stage, and there is not much to
be lost by using a cheaper design anyway, his scaled
quarter fraction makes a lot of sense. In a seven-
dimensional problem, Sacks, Schiller and Welch
(1989) similarly reduced the optimization problem by
restricting attention to scaled central-composite de-
signs. Without doing the optimization or amassing
experience from many problems, though, we cannot
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know when the relative performance of cheap designs
will be satisfactory.

For all 32 runs, Easterling recommends two com-
plementary quarter fractions. He rightly points out
the advantage of not having to optimize anything, and
we tried these fractions on {—, %} and {—%, %}°. In
some recent applications where data are cheap to
generate, we have been using Latin hypercube designs,
and for comparison we also report results for a 32-run
Latin hypercube. The six factors have the same 32
equally spaced values, —Y64, — 2%u, ..., 3%a4, but in
different random orders. For both designs, the predic-
tor is based on model (14) after re-estimating the
parameters 6, . . ., s and p in the correlation function
(9). Table R1 shows the average squared error of
prediction at the same 100 random points we used
previously. For ease of comparison, the results for our
original design are repeated. The complementary
quarter fractions and the Latin hypercube perform
similarly, with our design showing a modest
advantage.

It is of interest to note that, for certain values of n
and d, scaled standard designs can be optimal. For 8
points in 4 dimensions and 16 points in 5 dimensions
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