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Thus if the dimension can be reduced, the design in
the remaining dimensions is still reasonably good. The
optimal designs depicted in Johnson, Moore and
Ylvisaker (1988) do not tend to project uniformly.

We prefer the sequences of Faure (1982) to
the Halton-Hammersley sequences. The Halton-
Hammersley sequences are usually based on the first
d prime numbers, whereas Faure uses the same prime
number (the smallest prime r = d) on each axis. When
n = r* the Faure sequences exercise each input vari-
able in much the same way Latin hypercube designs
do. Moreover for k = 2 they exercise pairs of input
variables in that, for any given pair of inputs, one can
partition their domain into r? squares and find r*2
points in each square. Similarly there are equidistri-
bution properties for three or more axes. The equidis-
tribution properties of the Halton-Hammersley
sequences are different for each marginal subcube,
depending on the associated primes. We have found
that with n = r? and r =5 or 7 that the Faure sequences
appear to lie on planes in three dimensions. This is
alleviated by replacing each digit b in the base r
representation of the Faure sequence by o(b) where o
is a permutation of 0, ..., r — 1. The permutation
does not alter the equidistribution properties. One can
inspect three-dimensional scatterplots to make sure
that a given permutation is effective.

PARAMETER ESTIMATION

We would like to mention a quick way of estimating
0 ..., 6; in the covariance given by the authors’
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equation (9) with p = 1. When the function Y(x) is
nearly additive, we can estimate the main effects using
scatterplot smoothers. This corresponds to the inner
loop of the ACE algorithm in Breiman and Freidman
(1985). Let g; denote the estimate of the jth main
effect. A very smooth gj(-) is evidence that 6;
is small and a rough g;(-) suggests that 6; is
large. The roughness may be assessed by %, =
Y2.(g (i/m) — g ((i — 1)/m))* where the domain of g;
has been rescaled to [0, 1]. The expected value of .%;
may be expressed in terms of 6; through 6,, for fixed
o. The d equations in d unknowns can be solved
iteratively. The likelihood can be used to choose be-
tween the answers from several different values of m.
This avoids a high dimensional search for 6, . .., 6.
The first time we tried it, we got better parameter
values (as measured by likelihood) than we had found
by searching. Alternatively it suggests starting values
for such a search.
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The authors mention three derivations of (7). In a
classical framework, it is the MLE if the process
Z(-) is Gaussian, and relaxing this assumption it is
the BLUP, minimizing (2). Thirdly, it is the posterior
mean of Y(x) in a Bayesian analysis with a Gaussian
Z(-) and a uniform prior on 8. It is first worth pointing
out that with a proper multivariate normal prior
8 ~ N(b, B) and known ¢Z the posterior mean of Y (x)
has the same form as (7), but with 8 replaced by the
posterior mean of 3, i.e.,

B = (F'R'F + o*B™)(F'R'FB3 + ¢2 B™).

The interpretation of (7), as comprising the fitted
regression model plus smoothed residuals, still holds.

We can also dispense with normality in the Baye-
sian framework, using a similar device to (2). The
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