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Comment

Harry Joe

Professor Smith’s article is a timely paper since
environmental issues are very much in the news these
days. Extreme value inference is important for envi-
ronmental time series because regulations are gener-
ally based on the allowable number of exceedances
above high thresholds within certain time periods.
Smith has demonstrated very well the application of
theoretical results from point processes and extreme
value theory for statistical inference. In my discussion,
I will elaborate on a few things in the paper.

First I comment on the exploratory data analysis
and data reduction. Thanks to Dr. David Fairley at
the Bay Area Air Quality Management District, I have
some hourly ozone data for many stations in the San
Francisco area. There is a strong diurnal pattern in
the hourly average concentrations, with the large val-
ues in the afternoons (this is reported in Cleveland,
Kleiner and Warner, 1976; and Davison and Hemphill,
1987). In this case of a strong diurnal pattern, one
might reduce the data to daily maxima of hourly
averages. There would in general be serial dependence
for the daily maxima, so that there could be runs of
several consecutive days where the daily maxima ex-
ceed a high threshold. This reasoning suggests that a
cluster interval of 72 hours (or more) is better than a
cluster interval of 24 hours. Also from the diurnal
pattern, one can argue that some of the missing values
would not exceed the threshold used for deciding peaks
of clusters so that the p;; used in Section 4 could be
bigger than the actual observation period. Davison
and Hemphill (1987) mention that it is rare to have
an exceedance of over 8 parts per hundred million
between 9 pm and 9 am.

As mentioned in Section 3 , the approach of this
paper avoids the difficult modeling of the times series.
For the ozone data, the modeling of the daily maxima
of hourly averages may be easier than the modeling of
- the hourly average time series. In fact, Hirtzel and
Quon (1981) perform autocorrelation analyses on both
series over summer months and discover that corre-
lation persists at large time lags. If one wanted to
make inferences about the average cluster size above
a threshold as well as the frequency of exceedance
above the threshold, then the modeling of the time
series may be more necessary; I will be interested in
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these inferences and others for some time series for
personal exposures to a pollutant in a microenviron-
ment (cf. Duan, 1982). As Smith mentions, a simple
model would be a decomposition into a seasonal com-
ponent and a stationary series. I am thinking of mod-
eling the stationary series as a (first order) Markov
chain; some probabilistic theory for these stationary
series is included in O’Brien (1987) and Rootzén
(1988). This simple class of models is enough to allow
for an arbitrary marginal distribution and various
degrees of clustering above high thresholds. Starting
with a bivariate distribution function G with survival
function G, density g, and identical marginal distri-
butions F and marginal densities f, a Markov sequence
with transition probability kernel h(x;|x.—1) =
g(x,—1, %:)/f(x.,—,) exists. A parametric family of G
leads to a parametric family of kernels h. Let F =
1 — F. In some simple situations, G(x, x)/F(x) ~
c¢(F(x))* as x approaches the upper support point
of F, where 0 < ¢ < 1 and « = 0. Clustering above high
thresholds will depend on how close « is to zero and
how close ¢ is to 1. Using some results in O’Brien
(1987), if « = 0, then the extremal index in (3.8) is at
most 1 —c.

A special case of the Markov (order one) sequences
is with G bivariate normal for which an AR(1) se-
quence is obtained. However, for making inferences
for extremes, an assumption of normal tails for the
marginal distribution F is too strong and clustering
above high thresholds does not occur for ARMA
models. From extreme value theory, a weaker assump-
tion is that the tail of F is approximately generalized
Pareto (this requires that F is in the domain of at-
traction of an extreme value distribution). Hence clas-
sical time series methods are not always usable for
extreme value inferences. This is an important point
of the paper.

Next I comment on the likelihood in Section 4. Note
that the likelihood with k; = 0 and u;; = «; for all j has
a closed form maximum likelihood estimate. In this
case, the log-likelihood (log of (4.2)) becomes

Y {—piexpla;/oj] — Nijlog o; = Nij(Jj+ — )/ 0;}
i
=2 {—p-;expla;/g;] — Nyjlog g;
j
- N+j(3-’+j+ - aj)/‘fj},

where a subscript of + means that a subscript has
been added over and the bar over y denotes a mean.
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