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Comment

Lawrence D. Brown

It is a pleasure and an embarrassment to read a
historical story in which one plays an integral role.
From my perspective the story has been accurately
related, but I do have some miscellaneous comments
to make which are related to the general topic.

THE LOSS FUNCTION

The point estimation segment of this article
deals exclusively with the loss function (1.5)—i.e.,
L(6, 0®) = ((6/0?) — 1)% Although this loss is relatively
easy to handle analytically it seems somewhat inap-
propriate for a broad range of applications. Let me
repeat informally some thoughts I tried to convey
formally in Brown (1968).

Strictly from a qualitative point of view, the loss
(1.5) is very skewed. Note that lim; .. L (8, ¢%) = « but
lim;_oL(5, 0?) = 1. Hence overestimation of o2 is
much more severely penalized than underestimation.
Furthermore, the best invariant estimator for this loss
is S%/(v + 2), which is smaller than the maximum
likelihood value of S2/(v + 1), or the intuitively ap-
pealing and best unbiased estimator, which is S?/».
One rationalization for this discrepancy could be that
the intuition supporting use of S2?/v is in error; that
(1.5) is the actual loss and that therefore S2/(v + 2) is
to be preferred to S2/v (and Brewster and Zidek’s
(2.20) is then to be preferred to S%/(v + 2)).

However, another interpretation is possible. Note
that historically use of S2?/v was proposed and, pre-
‘sumably, found generally satisfactory without elicita-
tion of or reference to a specific loss function. If indeed
S2/v is satisfactory among invariant procedures per-
haps that is because it matches the actual (but sub-
conscious) loss function measuring the experimenters’
preferences. Thus one asks, “For what loss is the best
unbiased estimator, S%/», also best invariant?”.
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Stein (1964) found a loss function for which S%/» is
best invariant. It is

(1) Ls(5, ¢2) = 6/6¢% — In(8/0?) — 1.

Note that Lg(5, ¢2) = 0 and attains the value 0
uniquely at & = 2. Also, Ls(6, o®) is strictly convex in
6 and lim;_oLs(8, 02) = lims_.(Ls(d, 02) = . Thus
Lg has a number of pleasing qualitative properties.

In Brown (1968) more was established about Ls. It
was shown that for virtually any problem of estimating
a single scale parameter the best unbiased estimator
is also best invariant for this loss, and the loss function
Lg is the only loss function possessing this global prop-
erty (up to affine transformations, which do not affect
admissibility). Thus a belief in the suitability among
invariant estimators of the best unbiased estimator is
equivalent to a belief in the suitability of Ls. In sum-
mary, my own feeling is that the loss Ls is the most
appropriate for general studies of estimation of scale
parameters. (Of course, other loss functions may be
appropriate in specific applications.)

The story related for loss (1.5) by Maatta and Ca-
sella applies equally to the loss Ls. The analog of
Stein’s estimator, (2.4), is §(X, S2) = ¢(Z2)S?, where

1+ 22
v+1)/)

@ 3= min(%,

" Under Ls this estimator dominates the usual S2/».

Loss Lg is explicitly considered in Brown (1968)
where it is shown (as in (2.16)) that the choice

% 2y _ 60,1(7'2,) ifZZSrz,
@) $*(2%) = {1/y it 22> r?
yields an estimator better than S?/» when

Go1(r?) = 1/Eo 1 (S?| Z% = r?).

The algorithm of Brewster and Zidek then applies,
and shows the estimator with

(4) **(27) = 6.(27)
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