PREDICTIVE LIKELIHOOD

from the ancillary statistic A, (as well as the model)
while 6, a complimentary portion of the data, is being
used to assess the accuracy of these coverage func-
tions. In parametric inference the roles of these sta-
tistics are reversed in that the ancillary statistic A,
assesses the accuracy of § in determining the true
model. Practical examples are needed to bear out the
sensibility of basing recipe choice on coverages at and
near §.

Many practical models such as generalized linear
models do not admit exact ancillary A, upon which to
condition. In such instances we must find approximate
ancillaries as has been done in Hinkley (1980) and
Barndorff-Nielsen (1980, 1983).

I do not agree with Bjgrnstad’s suggestion that
pr{Z € I4(Y); 8} as an unconditional probability can
be used to meaningfully assess the various recipes.
Also measuring the worth of an interval (or its asso-
ciated recipe) by its guarantee of 90% coverage,
infy pr{Cy(Y) = .9} where Cy(y) = pr{Z € Io(y)|
y; 0}, amounts to a worst case scenario assessment.
This could be a very unrepresentative assessment
measure to use as a basis for recipe choice.

Comment

Tom Leonard, Kam-Wah Tsui and John S. J. Hsu

Professor Bjgrnstad is to be congratulated on an
excellent review of an important area. Previous statis-
tical practice largely referred to point predictions and
estimated standard errors when predicting future ob-
servations from current data. When analyzing time
series, contingency tables or nonlinear regression
models, it is often thought necessary to refer to asymp-
totics, even to obtain an approximate standard error.
However, methods are now available permitting pre-
cise predictions based upon finite samples. Moreover,
the applied statistician can refer to an entire predic-
tive likelihood or density or probability mass function,
summarizing the information in the data about any
future observation. This broadens the type of nonlin-
ear model, with several parameters, which may yield
useful predictions. These predictions can now be ex-
pressed in terms of probability statements, thus en-
hancing their interpretability, e.g., for noisy data sets.
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Let p(y | 8) denote our density (or probability mass
function) for an n X 1 vector y of current observations,
given a p X 1 vector § = (6, - --, 6,)7 of unknown
parameters, and p(z | §) represent the corresponding
density for an independent m X 1 vector z of future
observations. If 7(8) is the prior density of 6, for 6
lying in the parameter space 0, then the predictive
distribution '

(1) p(z|y) = J;p(zw)vr((ily) do
of z given y is also representable in the form

p(z|0)x(0]y)

(2) plz|y) = ~Oly.2) 0 € 0.
Here we have
3) ©(8]y) « 7(0)p(y|0), 6€E,

denoting the posterior density of 8, given y, and
(4) m(0]y, z) x p(z|6)r(8]y), 0 € O,

denoting the postposterior density of 0, given y and z.
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