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Comment

Ronald W. Butler

I welcome this papér by Professor Bjgrnstad because
it calls attention to the important practical problem
of prediction which, of course, has been of scientific
interest long before the subject of statistical science
itself. This paper is also timely because I believe there
will be much future interest in this area driven by the
current concern for quality control. Indeed, most of
the stated goals and objectives in the quality control
area are predictive aims to which the predictive meth-
odology herein might be more appropriately and
profitably applied.

The first portion of Bjgrnstad’s article summarizes
efforts to produce a likelihood-based approach to pre-
dictive inference. Lauritzen (1974), Hinkley (1979)
and Butler (1986) all conditioned on sufficient statis-
tics in order to judge the compatibility of future ob-
servable values with the data. Such conditional
inference methodology is consistent with Fisher’s
(1973) use of conditioning for parametric inference in
two-by-two tables. Section 1 below elaborates on this
comparison and also motivates conditional predictive
likelihood (denoted L. by Bjgrnstad) for discrete data.
In addition, various profile-based predictive likeli-
hoods can in turn be motivated as saddlepoint approx-
imations to these conditional predictive likelihoods
(see Butler, 1989).

" Section 4 of Bjgrnstad’s article introduces new ma-
terial on predictive likelihood assessment. These as-
sessment procedures are based on the accuracy of
certain unconditional coverage probabilities which I
do not believe are either relevant or useful for assess-
ing and choosing among the various predictive likeli-
hood recipes. Section 2 below discusses an assessment
procedure based on the accuracy of conditional cov-
erages given the appropriate ancillary statistics. Since
the original motivation for predictive likelihood is
founded on ideas of conditional inference, it seems
fitting and indeed more meaningful (to me at least)
that assessment should be conditional as in Barnard
(1986), Butler (1989) and in Section 2 below.

1. CONDITIONAL PREDICTIVE LIKELIHOOD

The conditional predictive likelihood recipe
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first appeared in Hinkley (1979) in a rather disguised
form that precluded its general usage. Subsequently it
was written in the form (1) in Butler (1986, page 4)
and suggested therein for use with discrete data only.
Motivation for (1) was also provided in the same
article (page 3) which I now expand upon.

The Bayesian analyst uses the marginal distribution
of the data for model criticism (Box, 1980), i.e.,

2 fly) = ff(ylﬂ)f(ﬁ) do,

where f (0) denotes a prior distribution. In prioritizing
a generic value z of future observable Z, the Bayesian
analyst also includes the value z with the data y and
criticizes the model with

(3) fly, 2) = ff(y, z|0)f(0) db,

which is proportional in z to f(z|y), the Bayesian
predictive density. Criticism in (3) is not concerned
with whether the theta associated with the distribu-
tion of Y is the same as that of the distribution of Z
given Y = y; these have been assumed to be the same.
What is being criticized is the level of agreement
between the generically assumed value z and the ob-
served data y.

From a likelihood perspective model criticism gen-
erally proceeds by conditioning the data on a minimal
sufficient statistic r(y) for the parameter (see Cox
and Hinkley, 1974, pages 37-38), i.e.,

f(y; 0)
fr(y); 0)°

In prioritizing a generic value z of a future observable

(4) fylr(y)) =

‘we incorporate it into the data as does the Bayesian

analyst and use
(5) f(y, z|r(y, 2)) = L.(z|y),

or conditional predictive likelihood, to assess the com-
patibility of the value z with data y.

We can illustrate these principles using a simple
example in which y = (x4, - - -, x,) is assumed to be an
iid sample of Bernoulli (§) trials. Conditioning y on
r(y) = Y x; = r leads to a uniform distribution over
all (?) subsets or configurations of the r successes
(ones) and n — r failures (zeros). Suppose we are
concerned that § = pr{success} might be increasing
with trial number and wish to measure such concern
with data y = (0, 1, 0, 0, 1, 1). Then among (§) = 20
configurations, we count those which are at least as
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