CHAOS

109

Comment: Relation Between Statistics

and Chaos

Richard L. Smith

The involvement of statisticians in the field of
chaos is relatively recent, but rapidly growing.
Howell Tong’s book (Tong, 1990) did much to make
statisticians aware of the field. The Royal Statisti-
cal Society has hosted discussion papers by Bartlett
(1990), and papers from a recent one-day meeting
will appear in a special issue of the Journal of the
Royal Statistical Society, Series B in 1992. I am
delighted to see that Statistical Science is also
taking a lead in developing this fertile source of
statistical problems.

Both of the articles under discussion, Berliner
(1992) and Chatterjee and Yilmaz (1992), are essen-
tially expository, outlining the theory of chaos in a
manner that is oriented toward statistical applica-
tion. Berliner’s article in particular shows how no-
tions of ergodic theory, which tends to be regarded
as being “‘at the hard end” of deterministic dynam-
ical systems theory, have simple probabilistic
interpretations that make the theory appealing to
statisticians, even though it is essentially describ-
ing deterministic systems.

In developing some more specific themes on which
I can comment in some detail, I would like to
concentrate particularly on the contribution that
statisticians can make to the interpretation of data
from dynamical systems.

There is an extensive literature on the mathe-
matical properties of systems, such as the logistic
map or Lorenz’s system of differential equations,
and there are also physical systems such as
Taylor-Couette flow where the underlying dynam-
ics of the system is sufficiently well understood for
a direct association to be made between mathemati-
cal theory and experimental observation. But in
areas such as ecology or economics, it is impossible
to know the detailed mathematical equations gov-
erning the system, and the whole of the evidence
for “chaos,” if indeed there is any evidence at all,
comes from the interpretation of experimental data.
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Ruelle (1990) gave a particularly witty demonstra-
tion of how easy it is to misinterpret such data.

I will focus on just one of the numerous tech-
niques proposed, namely the estimation of correla-
tion dimension. Suppose we have a univariate time
series {X,}, and form d-dimensional embedded
vectors Y, = (X,_4+1 Xp_g42>...»X,) Or more

generally Y, = (X,_a_1)rs Xn—(@-2yrr - - - » Xn)
where 7 is a lag parameter. Define
N i
Cxl(r) = disa 21 I("Yi -Yl < ")
N N(N - 1)/2
where N is the number of observations, I denotes
the indicator function and | - || is a norm. The limit

C(r) = lim Cy(r)

is called the correlation integral. The correlation
dimension, when it is defined, is given by

(1) log C(r) .

log r

In the context of fractals, these formulas give a
relatively straightforward way of determining a
dimension of a fractal. In the context of chaotic
time series, if it is possible to estimate a correlation
dimension, which for large enough embedding di-
mension d is independent of d within the limits of
statistical error, then this is often taken as an
indicator of deterministic chaos as opposed to ran-

v = lim

- domness.

Most current algorithms for calculating » from
experimental or observational data essentially con-
sist of regressing log Cy(r) on log r over a suitable
range of r. An alternative technique is the follow-
ing. First, we strengthen (1) to

2) C(r) ~ ar” asrl0.
This gives an asymptotic power-law tail for the
distribution of distance between two arbitrarily

chosen points of the attractor. In practice, we may
choose to simplify this even further to

(3)

for some threshold ¢, which will be considered
further below. A second assumption is that the

C(r)=ar’ forr<e
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