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Comment

Neal Madras

Professors Gelman, Rubin and Geyer have presented
us with many interesting ideas to think about. These
two papers have been billed as representing opposing
sides in a debate, but to my mind they complement
more than they contradict each other. This is probably
because I find the “debate” somewhat artificial, with
each side having its merits as well as its limitations.
It is true that one long run gives more statistical
information per CPU minute than do several shorter
runs (because of warm-up time); however, if you suspect
slow mixing for some particular reason, then you
should do your best to investigate its likely sources—
and multiple runs with intelligently selected starting
points are probably the most natural way to detect
such a problem. I think that most researchers who use
Monte Carlo simulation will find useful things in both
papers.

Guarantees are hard to come by in iterative simula-
tion. At present, few Markov chains are sufficiently
tractable to yield good rigorous upper bounds on the
amount of time necessary to run simulations (although
the last paragraph of Geyer’s Section 3.5 is a nice
observation that may make even relatively weak
bounds useful in some cases). What can we do when
rigorous analysis eludes us?

Geyer claims that guarantees can come from “experi-
ments with a range of sampling schemes proceeding in
small steps from schemes known to mix rapidly to the
scheme of interest, making sure at each step that the
run is long enough by comparing it to the runs already
done.” This is a very appealing idea, and it may work
very well sometimes, but it is hard for me to believe
that this method comes with general guarantees. The
problem is that two Markov chains whose transition
probabilities are very close may have very different
properties. For example, the Ising model in statistical
physics is a family of distributions indexed by a param-
eter T'> 0 (“temperature”) and having a critical value T,
(corresponding to a phase transition in the associated
infinite system). There is a standard implementation
of the Gibbs sampler (or the Metropolis algorithm)
to the Ising model, giving a Markov chain at each
temperature 7. We need not be concerned with the
details of the model and implementation [which may
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be found in Geman and Geman (1984) or Ripley and
Kirkland (1990)], except to say that the Markov chain
is rapidly mixing if 7' is large and slowly mixing if T’
is small, and that the change occurs fairly abruptly in
a small neighborhood of 7.. Consider a sequence of
schemes in which the ith scheme corresponds to the
Markov chain at temperature T}, where 9 > Ty > - - -
If Ts > T. > T4, say, then the small value of ¢® at T
may provide a false sense of security at T, and the
entire run at 7, may be too short to permit the chain
to escape some subset of the state space, which is
metastable at 7'y but not at Ts. The resulting estimate
of ¢® at Ty would be far too small. Similar abrupt
changes can occur in simulated annealing, perhaps at
more than one “critical value” [see p. 677 of Kirkpatrick,
Gelatt and Vecchi (1983)].

It is tempting to say that we can avoid such pitfalls
if we are careful enough, but the point remains that
important questions must be answered before ac-
cepting Geyer’s claim. First of all, what can be said
rigorously about a continuum of sampling schemes?
How small should the steps be to ensure that 62 does
not change too much from one scheme to the next, if
it is indeed possible to make such assurances at all?
Second, is the procedure feasible in practice? Perhaps
for real problems it is just too time-consuming to run
lots of simulations of different sampling schemes, and
it would be just as efficient and informative to run the
scheme of interest for ten times as long. These are
intriguing problems that are worth investigating, both
theoretically and experimentally.

To provide a context for my remaining remarks, I
shall briefly describe one Monte Carlo study of a simple
lattice model of polymers known as the self-avoiding

‘walk. A linear polymer is a molecule that consists of

many “monomers” (groups of atoms) joined sequen-
tially by chemical bonds. The spatial configuration of
a linear polymer with N (monomer-monomer) bonds
can be modeled as a random walk path W = w(0), w(1),
., w(N) on the three-dimensional integer lattice Z3;
here w(i) represents the location of the ith monomer,
and w(i) and w(i + 1) are always nearest neighbours in
the lattice. But two monomers cannot occupy the same
position in space; the simplest model that captures this
effect is the self-avoiding walk, which is defined by
requiring w(0), . . . , w(N) to be distinct sites of Z2.
Let S¥% be the set of all N-step random walk paths
in 72 that start at the origin, and let S¥ be the subset
of walks in S that are self-avoiding. Let P% and P%
denote the uniform probability measures on S and S#,
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