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Comment: Short-Range Consequences of

Long-Range Dependence

Arthur P. Dempster and Jing-Shiang Hwang

We welcome Jan Beran’s informative sketch of the
history of long-range dependence in many fields of
applied statistical science, and likewise his review of
the results of several decades of work by mathematical
statisticians, mainly on asymptotic sampling theory
of various robust as well as normality-based efficient
estimators.

Our experience has been with applications of the
models, most recently in Hwang (1992) and Dempster
and Hwang (1992), to simultaneous estimation of em-
ployment time series of 51 U.S. states (including DC)
given short input time series of n = 48 months. Since
our data are fixed, we have emphasized issues related
to modeling both time series of sampling error, which
a priori have no long-range dependence (ignoring biases
that cannot be assessed from our data), and underlying
true time series, which appear empirically to have long-
range dependence with parameter H close to 1 (but not
greater than 1 because nonstationarity of unemploy-
ment and employment rate series is a priori implau-
sible).

.For inference about the true series; we have empha-
sized Bayesian thinking, and associated computational
issues related to likelihoods of our fixed data, always
under assumptions of normality, which appear gener-
ally to be reasonable in our case study. Although our
theoretical approach to statistical inference is very
different from that of Beran, we agree with his opening
remarks about dangers from behaving as though tradi-
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tional ways of thinking about level and variability of
underlying short-memory stationary time series mod-
els continue to hold in the presence of stationary long-
memory models. We direct our brief comments to
exposing a few basic small n distinctions between in-
ferences appropriate in situations characterized by
short-range dependence and those with long-range de-
pendence. We begin by exhibiting artificially generated
pseudorandom “time series” that render in graphical
form the main points about estimating the mean and
variance of fractional Gaussian noise (fGn) data. We
have found it convenient to use alternative notation 72
and d in place of 2 and H, where d = 2H — 1 and 7 is
chosen so that the spectral density
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for A close to zero. On this scale, —1 <d <1 defines
the range for fGn, but 0 < d < 1 is the range of interest

for long-range phenomena, with d = 0 corresponding

to white noise and d = 1 marking the upper boundary
where the spectral density first becomes nonintegrable
at zero frequency. We use the same frequency domain
conventions as Beran, namely, that —7 <1< 7 and
that f(1) is scaled so that ¢ is its average value with
respect to uniform measure. Appropriate roles for the
alternative scale parameters 72 and ¢ are elaborated
below.

Figure 1 displays four series, each of length n = 64,
simulated from four different fGn models with d = 0.8,
0.9, 0.99, 0.999. Part of the reason for the near coinci-
dence of the curves apart from their levels is that all
four were generated from innovations based on the
same 64 normal pseudorandom values. In addition,
however, the similarity implies covariance structures
with remarkably similar forecast operators and resid-
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