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Comment

J. Fan and J. S. Marron

1. GENERAL COMMENTS

We would like to thank the authors for a useful and
‘informative article on the state of the art in nonpara-
metric regression. Especially enjoyable were the novel
and imaginative graphical methods that were devel-
oped to illustrate the points being made. These reveal
more intuition behind the theoretical results of Stone
(1977, 1982) and Fan (1992, 1993). It contains a nice
summary of many points which have already been
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made and justified (theoretically and intuitively) by
the recent papers of Chu and Marron (1991) and the
discussions therein and of Fan (1992, 1993).

The main contribution of the paper is a very accessi-
ble introduction to a point which is becoming quite clear
to insiders in the field of nonparametric regression:
local (i.e., moving window) polynomial regression esti-
mators have a number of compelling advantages over
the more widely used and studied kernel estimators.

In view of the very large literature on kernel regres-
sion estimators, an interesting issue is why it took so
long for the smoothing community at large to under-
stand fully the benefits of local polynomials. We specu-
late that this was because of “equivalence results,” the
best known being Miiller (1987) but see also Lejeune
(1985), whose main intuitive message was for equally
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