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propriate loss function) across the range of small
areas. Such studies depend on “target values” for
the parameter of interest for each small area, and
generally accepted values of these target values are
rarely, if ever, available (if they were, then there
would be no need for indirect estimates). Thus, eval-
uation studies tend to produce conflicting and am-
biguous results and leave all concerned less than
completely satisfied. A good case in point are the
many problems assaciated with use of a synthetic es-
timator to adjuste for state population undercounts
in the 1990 census.

Comment
Avinash C. Singh

The review paper of Ghosh and Rao fills a very
important gap by giving a comprehensive and coher-
ent picture of various developments in small area
estimation over the last twenty years. This area is
fascinating for at least three reasons: (1) there is a
great demand for small area statistics by both gov-
ernment and private sectors for purposes of plan-
ning and policy analysis; (2) the small area problem
provides a fertile ground for theoretical and applied
research; and (3) the problem has attracted the at-
tention of both Bayesians and frequentists because
both approaches arise naturally and often seem to
give similar results.

The main theme of my discussion is to compare
and contrast the Bayesian and frequentist solutions
to the problem of small area estimation. Why is
it that for this problem the two approaches to sta-
tistical inference seem to converge in many practi-
cal examples including the one considered by Ghosh
and Rao; that is, they provide similar results for
both point estimates and the corresponding mea-
sures of uncertainty? Can we make some general
statements about the similarity between the two ap-
proaches for small area estimation? How do their
frequentist properties compare? Questions about
the frequentist properties of some empirical Bayes
methods are also raised by Ghosh and Rao in Sec-
tion 5.2. Although the task of making exact compar-
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Having emphasized some of the problems asso-
ciated with applications of indirect estimators, we
should also mention the obvious fact that these es-
timation methods provide practitioners with many
useful tools. Challenging research issues concerning
the estimation of meaningful measures of error re-
main; without such measures, we must be cautious
regarding inferences and actions based on these es-
timators. Nevertheless, in many applications, these
methods provide us with an attractive alternative to
the use of high variance direct estimates or, in some
cases, no estimates at all.

isons is a difficult one, it is possible to make asymp-
totic comparisons for large m—the number of small
areas. This will be the focus of my discussion.

1. MODEL REFORMULATION

As discussed in the review paper of Robinson
(1991), understanding of procedures for estimating
fixed and random effects helps to bridge the ap-
parent gulf between the Bayesian and frequentist
schools of thought. The present discussion will also
strengthen this point. First, it will be convenient
for our purposes to reformulate the model with fixed
and random effects for small area estimation. Now,
the general mixed linear model is given by

1) y=XB+Zv+e

where y is the n-vector of element-level data; X and
Z are known matrices of orders n x p and n x m, re-
spectively, with rank (X) = p; 8 is a p-vector of fixed
effects; v is a m-vector of small area specific random
effects and € is a n-vector of random errors inde-
pendent of v such that v ~ WS (0, G),e ~ WS (0,R).
The abbreviation “WS” stands for “wide sense”; that
is, the distribution is specified only up to the first
two moments. The covariance matrices G and R
depend on some parameters A called variance com-
ponents. For the reformulation of (1), we will re-
gard the fixed effects 3 as random with mean 0
and covariance matrix af,I where arlz, — 00. Thus,
the limiting prior distribution of 8 is uniform (im-
proper) which is commonly assumed in the Bayesian
approach. The reformulation is useful for computa-
tional convenience as well as for making connections
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