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BESAG, GREEN, HIGDON AND MENGERSEN

Comment: Extracting More Diagnostic
Information from a Single Run

Using Cusum Path Plot

Bin Yu

The article by Besag, Green, Higdon and
Mengersen adds to a series of recent papers (Besag
and Green, 1993; Geyer and Thompson, 1992; and
Gelman and Rubin, 1992b) in making Markov chain
Monte Carlo (MCMC) methods accessible to more
statisticians, especially applied statisticians. I am
glad to see that different algorithms are reviewed
in a unified way and many examples are given.
Although the article gives general recommenda-
tions as to which algorithms and sampling scans to
choose, there is not much discussion on the empiri-
cal monitoring of convergence of the Markov chains.
Since the convergence issue is very critical to the
success of MCMC methods, and something close to
my heart, I will make this issue my topic here. In
particular, using the prostate cancer example in
the article by Besag, Green, Higdon and Mengersen
and the Ising model example in Gelman and Rubin
(1992a), I illustrate that the cusum path plot in Yu
and Mykland (1994) can effectively bring out the
local mixing property of the Markov chain.

It had been believed by many MCMC researchers
(including this author) that information solely from
a single run of a Markov chain can be misleading
since, for example, it can get trapped at a local
mode of the target density. Consequently, addi-
tional information beyond that from a single run
has been introduced to the convergence diagnostics.
Gelman and Rubin (1992b) proposed a multiple
chain approach in the MCMC context, followed by
Liu, Liu and Rubin (1992) and Roberts (1992). Yu"
(1994) introduced additional information to a single
run by taking advantage of the unnormalized tar-
get density. In the context of Gibbs samplers, Ritter
and Tanner (1992) and Cui, Tanner, Sinhua and
Hall (1992) suggested diagnostic statistics based on
importance weights, using either multiple chains or
a single chain. A priori bounds on the convergence
rate can be found in Rosenthal (1993) and
Mengersen and Tweedie (1993), but unfortunately
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these theoretical bounds are currently known only
in some very special cases. For other references on
existing diagnostic tools, see the recent and thor-
ough review by Cowles (1994).

On the other hand, Yu and Mykland (1994) sug-
gest that more information can be extracted from a
single run than previously believed. The device is
the cusum path plot, which brings out the local
mixing behavior of the Markov chain in the direc-
tion of a chosen one-dimensional summary statistic,
more effectively than the sequential plot. The cases
where the cusum path plot works well are those
where the mixing behavior is homogeneous across
the sample space. For example, in some multimodal
examples, the reason that the chain gets trapped at
a local mode is because the chain moves around
very slowly, even within one mode, and the cusum
path plot brings out this local mixing speed even
when the sampler is trapped at one mode. As shown
below, the Ising model example of Gelman and
Rubin (1992a) has a slow local mixing property.
One situation in which the cusum path plot fails is
a variant on the witch’s hat (cf. Cui, Tanner, Sin-
hua and Hall, 1992; Yu and Mykland, 1994), where
the chain has a split mixing behavior: fast in one
region and slow in another.

Now we introduce the cusum path plot formally.
Let X,, X,,..., X, be a single run of a Markov
chain, and let T(X) the chosen one-dimensional
summary statistic. Let n, be the “burn-in” time,
and we construct our cusum statistics based on
T(X,,+1),---,T(X,) to avoid the initial bias of the
chain. What we get out of the cusum plot is the
more detailed information we cannot see in the
sequential plot of T(X) which MCMC users have
been plotting all along.

Denote the observed cusum or partial sum as
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