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formly in A. However, this approach may not succeed in controlling the asymp-
totic level of the confidence set. The problem is that the relevant asymptotic
expansions may not converge uniformly over all A, especially when A is infinite
dimensional.

An interesting strategy, proposed by Loh (1985) in a testing context, is to pick
critical values so as to control the apparent level of the confidence set for 8 over
a confidence set for A of level 1 — ¢,, where ¢, is small. When feasible, this
construction ensures that the level of the confidence set for § is at least
1 — a — ¢,. One difficulty is finding a good confidence set for A. If the latter is
too large, then the induced confidence set for 6 is likely to be inefficient. Perhaps
the notion of controlling level of a confidence set for  is too strong. On the other
hand, controlling asymptotic coverage probability only pointwise in A is clearly
too weak.
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I found Professor Hall’s unified treatment of bootstrap bounds and confidence
intervals very valuable. I was particularly interested by his exploration of the
relation between the accelerated bias correction bootstrap bounds and the
Studentized bounds, a relationship which I also studied, but only in the para-
metric framework, in my discussion of Efron (1987). In my discussion I want to:

1. Argue at least heuristically that, in the nonparametric context, the second
order equivalence of BAABC and éSTUD holds quite generally for 6(F') a suffi-
ciently smooth von Mises functional, provided that we Studentize properly.
For example, it holds if the estimate 6= G(F'), where F is the empirical d.f., is
an M estimate corresponding to a nice ¢ function; see Huber [(1981), Chapter
2] for examples.

2. Suggest that quite generally in a parametric, nonparametric or semiparamet-
ric context, §,,; and fgpyp are second order equivalent provided again that §
is efficient and we Studentize properly, that is, by an efficient estimate of the
asymptotic standard deviation of 6.
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