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1. Introduction. Although hardly the authors’ intention, these papers by
Diaconis and Freedman (D & F) will probably be read by many as criticism
against and pessimism about Bayesian analysis in situations with high-dimen-
sional parameter spaces. It is perhaps also easy for the statistician scanning the
papers to get an impression of “just counterexamples,” which would be unfair;
these and earlier papers by D&F (or F & D) contain many new important
statistical ideas and also useful mathematical techniques.

I will try to be (more) positive and hope to show that thinking Bayes in semi-
and nonparametric models may be a worthwhile enterprise, sometimes giving
additional insight into old problems, and sometimes (dare I say often?) leading to
sensible Bayes procedures that also behave agreeably in the frequentist asymp-
totic sense. The bulk of my comments concerns a problem that is almost as old as
statistics itself, that of fitting a parametric model to a data set, and that can be
attacked again with ideas underlying some of the constructions of D & F. Let
X,,..., X, be a sample from some unknown distribution F with density f. Some
(possibly crude) parametric family {Fy, f,: 0 € ©} is then forced on the data.
Textbooks teach us how to proceed, for example, advocating finding the maxi-
mum likelihood estimator 9ML, on the grounds of good asymptotic behavior, in
particular, consistency. What very few textbooks tell us, however, is what 9ML
does when the model is wrong, i.e., there is no 4, with f = f, . It is however not
difficult to see that 8y still is a meamngful estimator in that it takes aim at the
parameter value 6 = 6, that minimises Kullback-Leibler “information distance”

(1) I(f: fo) = [ log( f/fy) dx;

the log likelihood divided by n is a consistent estimate of [f log fdx — I(f: f,).
Under appropriate conditions 0ML is consistent for this “least false” parameter
value. Hjort (1985a, Chapter 3) has further comments about the behavior of
maximum likelihood machinery when the model is wrong.

One of the major uses of a fitted model is prediction, or probability assess-
ments, for certain sets. Thus we could be interested in stating that approximately
90% of future Xs from a fitted normal will fall in (% — 1.6456, i + 1.6456), or
that approximately 50% of future data points from a fitted Weibull fall below
0(1og2)!/% etc. If such statements are an important part of the statistical
analysis, then there are disadvantages to using fiyy, 8y, 1€SP. Oy, Gy, in the
case of an incorrectly specified model, and one could do better with other
estimates that aimed at other versions of least false population parameters. It is
the aim of the present notes to show that such least false parameters can be
defined and that a suitably engineered semiparametric Bayesian setup can result
in estimates that actually manage to estimate these.
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