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it is unconditionally advantageous to use them. This is an example of Brown’s
phenomenon at the level of loss estimators.

For more general point estimators & of the form (8.3.1), the Lemma
indicates how one might apply existing work to construct reasonable loss
estimators for (6 — a)?. If one works conditionally on S, as in (3.3.3), then it is
plausible that an improvement on the unbiased estimate of loss of (§ — a)?
will follow as in Section 5 of J and an improvement on the upper bound
02+ 0%2trS~! as in Lu and Berger (1989). Construction of loss estimates
corresponding to (3.3.4) and (3.3.5) is less clear, but an interesting problem
perhaps deserving further study.
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The fundamental ancillarity paradox introduced by Brown can be observed
in many other settings. As an example, we herein extend the results of Brown
to the confidence set scenario:

Let X be a p-dimensional normal random variable with mean u € R? and
covariance matrix 3. Consider the confidence procedure

Cs(X) = {u: (8(X) — w)271(8(X) — p) <c?},
where 37! is an inverse or generalized inverse of 3. The coverage probability
of C;, P(Cs(X) contains w), is the usual criterion used for evaluating proce-
dures of a fixed size (determined by c). It is convenient to rephrase this as a

decision problem, with 5(X) being thought of as an estimator and 1 — P, (C(X)
contains w) being the risk function corresponding to the loss function.

L(u,d) = {1, if (d _.#)'z_l(d —p) =c?
0, otherwise.

Brown (1966) and Joshi (1969) independently showed that §,(X) =X is

admissible if p = 1,2 and inadmissible if p > 3. Hwang and Casella (1982,

1984) proved that the positive part James-—Stein estimator is an improved

estimator under the above loss L,.
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