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In Section 5 of his thought-provoking paper, Professor Brown discusses
Cox’s ancillarity example and draws a distinction between point estimation
and confidence procedures. He argues for the conditional validity of his
proposed point estimation procedures, since in point estimation no condition-
ally interpretable stochastic claim is made.

It is, however, possible to make a data-dependent stochastic statement
concerning a point estimate without going so far as to provide a confidence set.
This may be done by estimating the (squared) error (& — a)?. The issue has
been considered in various point estimation settings recently by Rukhin
(1988), Lu and Berger (1989) and Johnstone (1988) (the last hereafter denoted
by J). Here I shall indicate briefly how some of these ideas extend to Brown’s
context.

In the setting and notation of Section 3, let L = L({V;},{Y;}) be an esti-
mate of the squared error (§ — a)? of a point estimator § = §({V.},{Y;}). The
quality of L may be evaluated in turn by using (for simplicity) a quadratic loss
E[L - (8 — a)?]? where the expectation is taken over the joint distribution of
V, Y).
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