CORRECTION NOTE

CORRECTION TO

"ON DISTINGUISHING TRANSLATES OF MEASURES"

BY MAREK KANTER

Sir George Williams University

The proof of Theorem 3 of [1] contains a gap which we fill with the three Lemmas that follow. We also note that $f_N(x)$ should be changed to $f_N(x + \alpha m)$ on page 1776 of [1], line 21, where $f_N(x)$ is defined.

Our notation is the same as in [1]. The setting is, as before, a general real stochastic process $X = (X(t) | t \in T)$. We let S stand for the set of all real valued functions on T and we let $\mathscr A$ stand for the σ -field of subsets of S generated by coordinates. For a fixed element $m \in S$ and $\alpha \in R$, the real line, we let P_{α} stand for the measure induced on $(S, \mathscr A)$ by the process $(X(t) + \alpha m(t) | t \in T)$.

We say that the measures P_{α} are simultaneously Borel distinguishable if there exists an \mathscr{S} measurable function f such that

$$P_{\alpha}[f = \alpha] = 1$$
 for all $\alpha \in R$.

In our earlier paper [1] we called the parameter α "consistently" distinguishable in this case, a terminology which seems at variance with the usual terminology which reserves the term "consistently" for the convergence (a.s.) or in probability of "finitely defined" functionals to the true parameter α .

LEMMA 1. Let $(X_n | n \ge 1)$ be a sequence of independent identically distributed random variables. Suppose $m = (m_n | n \ge 1)$ is a sequence of real numbers such that $\sup_{n\ge 1} |m_n| = \infty$. Then there exists a sequence f_k of $\mathscr M$ measurable linear functionals defined on S such that

$$f_k(x + \alpha m) \rightarrow \alpha$$
 a.s. $\forall \alpha$.

PROOF. Pick a subsequence n_k such that $|m_{n_k}| \to \infty$. For

$$x=(x_1,x_2,\cdots)\in S$$

define

$$f_k(x) = x_{n_k}/m_{n_k}.$$

Now

$$(X_{n_k} + \alpha m_{n_k})/m_{n_k} = \alpha + X_{n_k}/m_{n_k}$$

Also it is clear that

$$X_{n_k}/m_{n_k} \rightarrow 0$$
 a.s.,

taking a subsequence if necessary. It follows that

$$f_k(x + \alpha m) \rightarrow \alpha$$
 a.s. $\forall \alpha$.

Lemma 2. Let $(X_n | n \ge 1)$ be a sequence of independent identically distributed 189