BOOK REVIEW

H. Kunita, Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge, 1990, 346 pages, \$69.50.

REVIEW BY T. E. HARRIS

University of Southern California

A stochastic flow is a family of random mappings $\phi_{s,t}$, $0 \le s \le t \le T$, of R^d (or other space) into itself, satisfying the composition relation $\phi_{t,u} \circ \phi_{s,t} = \phi_{s,u}$ if $s \le t \le u$. There are interesting cases with coalescence, but most treatments have dealt with homeomorphic or diffeomorphic flows. Then $\overline{\phi}$ defined by $\overline{\phi}_{s,t} = \phi_{s,t}$ for $s \le t$ and $\overline{\phi}_{s,t} = (\phi_{t,s})^{-1}$ for $s \ge t$, is a flow satisfying the composition relation for $0 \le s, t \le T$. If $\phi_t, t \ge 0$ is a homeomorphism-valued process, then $\phi_{s,t} := \phi_t \circ (\phi_s)^{-1}$, $0 \le s, t \le T$ is a flow. If ϕ is a flow defined for $0 \le s, t \le T$, the restriction to $s \le t$ is called a forward flow, and is usually considered for fixed s. The restriction to $s \ge t$ is a backward flow. We speak mostly of forward flows, but there are parallel backward results, and the interplay between the two is important. ϕ_t denotes $\phi_{0,t}$.

In an important case $\phi_{s,\,t}(x)$ is continuous in $s,\,t$ and $x,\,$ and $s_1 \le t_1 \le s_2 \le t_2 \le \cdots$ implies that $\phi_{s_1,\,t_1},\phi_{s_2,\,t_2},\ldots$ are independent mappings; such flows are called Brownian. For Brownian flows with some regularity conditions, the paths of a set of k points are a dk-dimensional diffusion. In the time-homogeneous case, the law of $\phi_{s,\,t}$ depends on t-s.

It is known that Brownian stochastic flows arise as solutions of Itô systems in \mathbb{R}^d :

$$d\phi_{s,t}^{i}(x) = \sum_{j=1}^{m} \sigma_{j}^{i}(\phi_{s,t}(x),t) dW_{jt} + b^{i}(\phi_{s,t}(x),t) dt, \qquad t \geq s;$$
(1)

$$\phi_{s,s}^i(x)=x^i, \qquad 1\leq i\leq d.$$

Here the W's are independent Wiener processes in R^1 . The σ 's and b's satisfy familiar conditions. If we change σ without changing $\sigma\sigma^T$, the one-point motions are unchanged but in general the flow will be different. However, the flow is determined by the two-point motions, or alternatively by the *infinitesimal mean* (drift) b(x,t) and the *infinitesimal covariance matrix*:

$$a^{ij}(x,y,t) = \sum_{k} \sigma_{k}^{i}(x,t) \sigma_{k}^{j}(y,t)$$

$$= \lim_{u \downarrow t} E\{(\phi_{tu}^{i}(x) - x^{i})(\phi_{tu}^{j}(y) - y^{j})\}/(u-t),$$

$$b^{i}(x,t) = \lim_{u \downarrow t} E\{\phi_{tu}^{i}(x) - x^{i}\}/(u-t).$$

Received July 1992.

581