BOOK REVIEW

Gregory F. Lawler, Intersections of Random Walks. Probability and Its Applications. Birkhauser, Boston, 1991, 219 pages

Review by R. E. Bradley

Adelphi University

The contents of the book are as follows:
Chapter 1. Simple random walk
Chapter 2. Harmonic measure
Chapter 3. Intersection probabilities
Chapter 4. Four dimensions
Chapter 5. Two and three dimensions
Chapter 6. Self-avoiding walks
Chapter 7. Loop-erased walk
Random walks have fascinated and perplexed the mathematical community for about a century. Although there are a variety of complications and variations by means of which the basic model can be generalized, the behavior in the simplest case is already complex and surprising.

Consider a symmetric nearest-neighbor random walk on the integer lattice \mathbf{Z}^{d}. To what extent does the behavior of the walker depend upon the dimension d ? On one hand, the mean-squared displacement is independent of dimension and $E\left(\left|S_{n}\right|^{2}\right)=n$ for every natural number n, where S_{n} is the walker's position after n steps. On the other, Polya proved in 1921 that if $d \leq 2$, such a walk is recurrent, whereas if $d \geq 3$, then the walk is transient.

The intersection properties considered by Gregory Lawler in Intersections of Random Walks are invariably dimension-dependent. The starting point for his investigations are the probabilities $p_{n}(x)$ that a walk beginning at the origin reaches the node $x \in \mathbf{Z}^{d}$ at the completion of its nth step. The first observation is that this probability can only be positive if the parity of n matches that of the sum of the components of x, in which case we write $n \leftrightarrow x$. The next observation is that the central limit theorem implies that $n^{-1 / 2} S_{n}$ converges in distribution to a normally distributed random variable in R^{d}.

A heuristic argument suggests that for large $n, p_{n}(x)$ should be approximately equal to

$$
\bar{p}_{n}(x)=2\left(\frac{d}{2 \pi n}\right)^{1 / 2} \exp \left(\frac{-d|x|^{2}}{2 n}\right)
$$

Received March 1996.

