A GENERALIZED ERROR FUNCTION*

By

ALBERT WERTHEIMER

I. INTRODUCTION

Given a set of observed values ℓ_i ($i=1, 2, 3, \ldots, n$.) obtained from n observations assumed to be made on the same quantity, ℓ , under the same conditions. We seek to determine two functions $f(P, \ell_i)$ and $\phi(P, \ell_i)$ such that

$$f(P, \ell_i) = 0, \qquad (i = 1, 2, 3, ..., n)$$

defines p as a unique value assigned to the observed quantity; and $\mathcal{O}(P, \ell_i) d\ell_i$ gives to within infinitesimals of higher order the probability that if another observation is made, the observed value will lie in the interval

$$l_i \leq l \leq l_i \cdot ll_i$$
.

Gauss determined the φ function to be the so-called normal error law namely,

$$\rho(P,\ell_i) = ce^{-h^2(P-\ell_i)^2}$$

on the basis of the following assumptions.

(a) The product $\prod_{i} \varphi(P_{i} t_{i})$ is to be a maximum with respect to ρ . Thus

$$\sum_{i} \frac{\partial}{\partial P} \log \varphi(P, t_i) = 0,$$

$$\sum_{i} \frac{\delta^{2}}{\delta p^{2}} \log \varphi(P, t_{i}) \neq 0.$$

^{*}Presented to the American Mathematical Society, December 28, 1931.