ON THE SAMPLING DISTRIBUTION OF THE MULTIPLE CORRELATION COEFFICIENT

By S. S. WILKS*

The problem of finding the distribution of the multiple correlation coefficient in samples from a normal population with a non-zero multiple correlation coefficient was solved in 1928 by Fisher¹ by the application of geometrical methods. In his derivation he used the facts that the population value ρ of the multiple correlation coefficient is invariant under linear transformations of the independent variates, and that the distribution of the multiple correlation coefficient is independent of all population parameters except ρ .

In this paper it will be shown that the distribution of the multiple correlation coefficient can be derived directly from Wishart's² generalized product moment distribution without making use of geometrical notions and the property of the invariance of ρ under linear transformations of the independent variates. Furthermore, it will not be necessary to show that the distribution will be independent of all population parameters except ρ .

The population value of the multiple correlation coefficient between a variate x_1 and a set of variates x_2 , x_3 , x_n is the ordinary correlation coefficient between x_1 , and that linear function of the variates x_2 , x_3 , x_n which will make this correlation a maximum. It can be expressed as $\rho^2 = 1 - \frac{\Delta}{\Delta_1}$ where Δ is the determinant of the correlations among all of the

^{*}National Research Fellow in Mathematics.

¹R. A. Fisher, The general sampling distribution of the multiple correlation coefficient, Proceedings of the Royal Society of London, series A. vol. 121 (1928), pp. 654-73.

vol. 121 (1928), pp. 654-73.

John Wishart, The generalized product moment distribution in samples from a normal multivariate population, Biometrika, vol. 20A (1928) pp. 32-52.