ON SAMPLES FROM A MULTIVARIATE NORMAL POPULATION1

By Solomon Kullback

1. Introduction. In this paper we shall discuss the distribution of certain functions calculated for samples drawn from a multivariate normal population. The method of solution is based on the theory of characteristic functions and presents further application of that theory to the distribution problem of statistics.²

We shall have occasion to refer to the multivariate normal population whose distribution law is given by

(1.1)
$$F(x) \equiv \pi^{-n/2} |B_{pq}|^{1/2} e^{-B(x-m, x-m)} \qquad (p, q = 1, 2, \dots, n)$$

where B(x-m, x-m) is the real, positive definite quadratic form of the x_p-m_p with matrix $||B_{pq}||$. Here m_p is the mean in the population of the pth variate and $B_{pq} = \Delta_{pq}/2\sigma_p\sigma_q\Delta$ where σ_p is the standard deviation in the population of the pth variate; Δ is the determinant of population correlations $\rho_{pq} = \rho_{qp}$; Δ_{pq} is the co-factor of ρ_{pq} in Δ ; and $|B_{pq}|$ is the determinant of the matrix $||B_{pq}||$.

Since the integral of (1.1) over the entire field of variation of the variables is unity, we have (using abbreviated notation)

(1.2)
$$\int e^{-B(x-m, x-m)} dx = \pi^{n/2} |B_{pq}|^{-1/2}$$

Equation (1.2) will be true if $||B_{pq}||$ is complex, provided its real part is symmetric and positive definite.³

The distribution of sample means of samples from the population (1.1) is independent of the distribution of the system of sample variances and covariances and is given by⁴

$$F_1(\bar{x}) \equiv \pi^{-n/2} |A_{ng}|^{1/2} e^{-A(\bar{x}-m, \bar{x}-m)}$$

where $A(\bar{x}-m,\bar{x}-m)$ is the real, positive definite quadratic form of the \bar{x}_p-m_p with matrix $||A_{pq}||$. Here $\bar{x}_p=(1/N)\sum_{\alpha=1}^N x_{p\alpha}$ is the sample mean of the *pth*

¹ Presented to the American Mathematical Society, February 23, 1935.

² For more complete reference to the theory of characteristic functions as applied to statistics see S. Kullback, *Annals of Mathematical Statistics*, Vol. 5 (1934), pp. 263-307.

³ J. Wishart and M. S. Bartlett, Proc. Cambridge Phil. Soc., Vol. 29 (1933), pp. 260 ff.

⁴ J. Wishart, Biometrika, Vol. 20 A (1928), pp. 32-52.

J. Wishart and M. S. Bartlett, loc. cit.