VARIANCE OF A GENERAL MATCHING PROBLEM*

By Joseph A. Greenwood

Let us match two decks of cards: (A) composed of t distinct groups of s identical symbols each, and (B) a target deck composed of i_1 symbols of the first kind, i_2 of the second, etc., such that

$$i_1 + i_2 + \cdots + i_t = st = n.$$
 (1)

It is not necessary that all the i's be different from zero.

(a) Forming the Relative Frequency Table. The first part of the paper is concerned with forming a 2x2-way table showing the relative frequencies of hits and misses of all pairs of cards in the target deck. The notation $\frac{i}{0}$ indicates a miss at the *i*th card of the target deck, $\frac{i}{1}$ a hit. $\frac{i}{0} = j$ indicates a miss at the

Case I. ith and jth target cards the same symbol.

ith card, with the matching card identical to the jth target card.

$$i$$
 j Theoretical freq. Weighted freq.

If 0 then -1 0 $n-s-1$ $(t-1)(n-s-1)$ 2.1

0 1 s $(t-1)s=n-s$ 2.2

1 0 $n-s$ $n-s$ 2.3

1 1 $s-1$ $s-1$ $s-1$ 2.4

Total $s-1$ 2.4

But $\frac{i}{0}$ occurs in (t-1)/t of the events. Thus we must weight 2.1 and 2.2 with a factor (t-1), giving the last column in (2).

Case II. ith and jth target cards different

ut
$$0$$
 occurs in $(t-1)/t$ of the events. Thus we must weight 2.1 and 2.2 a factor $(t-1)$, giving the last column in (2).

ASE II. ith and jth target cards different

i j Theoretical freq. Weighted freq.

If $0 = j$ then -0 $n-s$ $n-s$ 3.1 $0 = j$ 1 $s-1$ $s-1$ 3.2 $0 \neq j$ 0 $n-s-1$ $(n-s-1)(t-2)$ 3.3 $0 \neq j$ 1 s s $s(t-2)$ 3.4 1 s s $s(t-2)$ 3.4 1 s s s s s 3.6 Total s s s 3.6

56

^{*} Presented to the American Mathematical Society, September 9, 1937.

¹ Read, 'then out of n-1 times'.