A NOTE ON THE DERIVATION OF FORMULAE FOR MULTIPLE AND PARTIAL CORRELATION*

By Louis Guttman

1. Multiple Correlation. Let the measurements of N individuals on each of the n variables $x_1, x_2, \dots, x_k, \dots, x_n$, be expressed as relative deviates; that is, such that

$$\Sigma x_k = 0, \qquad \Sigma x_k^2 = N, \qquad \qquad k = 1, 2, 3, \cdots, n,$$

where the summations extend over the N individuals.

If values of λ_k are determined so that

$$\Sigma(x_1 - \lambda_2 x_2 - \lambda_3 x_3 - \cdots - \lambda_n x_n)^2$$
 is a minimum,

and if we let

$$(1) X_1 = \lambda_2 x_2 + \lambda_3 x_3 + \cdots + \lambda_n x_n,$$

then the multiple correlation coefficient, obtained from the regression of x_1 on the remaining n-1 variables, is defined as

$$r_{1.234...n} = r_{x_1X_1}$$
.

The square of the standard error of estimate of x_1 on the remaining n-1 variables is defined as

$$\sigma_{1,234...n}^2 = \frac{1}{N} \Sigma (x_1 - X_1)^2.$$

The minimizing values for λ_k are obtained from the normal equations

(2)
$$\Sigma(x_1 - X_1)x_k = 0, \qquad k = 2, 3, \dots, n.$$

which may be written in expanded notation as.

where
$$r_{ik} = \frac{1}{N} \sum x_i x_k = r_{ki}, r_{ii} = 1.$$

^{*} The notions involved in this demonstration are certainly well-known. However, the directness and simplicity of the derivations may lend some merit to their exhibition. The writer is indebted to Professor Dunham Jackson for useful advice.