ON THE PROBABILITY THEORY OF ARBITRARILY LINKED EVENTS

By HILDA GEIRINGER

1. Introduction. The classical Poisson problem can be stated as follows: Let p_1 , p_2 , \cdots p_n be the probabilities of n independent events E_1 , E_2 , \cdots E_n respectively; i.e. the probability of the simultaneous occurrence of E_i and E_j is equal to p_ip_j , that of E_i , E_j , E_k is equal to $p_ip_jp_k$ and so on. We seek the probability $P_n(x)$ that x of the events shall occur. If, $p_1 = p_2 = \cdots = p_n$ the problem is known as the Bernoulli problem.

More generally the n events may be regarded as dependent. Let p_{ij} be the probability of the simultaneous occurrence of E_i and E_j ; p_{ijk} that of E_i , E_j , E_k and finally $p_{12...n}$ that of E_1 , E_2 , ... E_n . There shall arise again the problem of determining the probability $P_n(x)$ that x of the n events will take place. Furthermore the asymptotic behaviour of $P_n(x)$ for large n can be studied; and we shall especially be interested in the problem of the convergence of $P_n(x)$ towards a normal distribution or a Poisson distribution.

Even in the general case which we just explained, the sums

$$S_1 = \sum_{i=1}^n p_i, \qquad S_2 = \sum_{i,j=1}^n p_{ij}, \cdots S_n = p_{12 \cdots n}$$

of our probabilities differ only by constant factors from the factorial moments $M_n^{(1)}$, $M_n^{(2)}$, ... $M_n^{(n)}$ of $P_n(x)$. For we have

$$S_{\nu} = \frac{1}{\nu!} M_n^{(\nu)} = \frac{1}{\nu!} \sum_{x=\nu}^n x(x-1) \cdots (x-\nu+1) P_n(x).$$

Starting from this remark the author has, in earlier papers, [8, 9, 10] established a theory of the asymptotic behaviour of $P_n(x)$, making use of the theory of moments. The criterion for the convergence of $P_n(x)$ towards the normal—or the Poisson—distribution consists of certain conditions² which the S_r must satisfy.

In the following section a concise statement of the whole problem will be given, independently of the author's earlier publications. For the convergence towards the normal distribution we shall be able to establish a theorem under wider conditions in a manner which seems to be simpler. Finally, some applications of the theory will be considered.

260

¹ Sec, for instance, references [1]-[7] at end of paper.

² Using the "theorem of the continuity of moments," Professor v. Mises [11] established sufficient conditions for the convergence of $P_n(x)$ towards a Poisson distribution in the case of the problem of "iterations." However, his reasoning can be applied to the general case without much difficulty.