ON THE POWER OF THE L_1 TEST FOR EQUALITY OF SEVERAL VARIANCES

By George W. Brown

The criterion L_1 was obtained by Neyman and Pearson¹ for testing the statistical hypothesis H_1 that k samples, known to be from normal universes, are actually from universes with equal variances, where the means are unspecified. The test seems to be of importance, when one considers the number of experiments which are concerned with the comparison of several types of treatments. The experimenter is in most cases interested in the respective means, and it is usually assumed, in order to test for significance of the difference between sample means, that the variances of the distributions are equal. At present, significance tests for justifying this assumption are rarely applied. Because of the unsatisfactory status of the problem of testing simultaneously for means and variances, the L_1 test is appropriate for justifying first the assumption of equal variances before testing for the means.

Neyman and Pearson have treated the sampling distribution of L_1 when H_1 is true, and Wilks and Thompson² have discussed the general distribution of the criterion when H_1 is not true. Here we shall show that the test is unbiassed when the number of observations is the same in each sample, and is in general unbiassed in the limit, in a certain sense. In addition, values of the power function have been computed for a few selected cases, when k is 2, in order to exhibit qualitatively the sharpness of the test.

Let the *i*-th sample $(i = 1, 2, \dots, k)$ of n_i individuals be denoted by Σ_i and suppose Σ_i has been drawn at random from a normal population with mean m_i (unknown) and variance $\sigma_i^2 = \frac{1}{A_i}$. Denote the observations of Σ_i by x_{ir} $(r = 1, 2, \dots, n_i)$. Then the criterion L_1 is expressible in terms of the observations as follows:

(1)
$$L_1^{\frac{1}{2}n} = \frac{n^{\frac{1}{2}n} \prod_{i=1}^k (c_i^2)^{\frac{1}{2}n_i}}{\prod_{i=1}^k n_i^{\frac{1}{2}n_i} \left[\sum_{i=1}^k c_i^2\right]^{\frac{1}{2}n}}$$

where $n = \sum n_i$ and $c_i^2 = \sum_{r=1}^{n_i} (x_{ir} - \bar{x}_i)^2$. For convenience we shall let $L_1^{\frac{1}{n}} = \lambda$.

¹ [1], pp. 461-464.

² See [4]. Nayer [3], studied the Type I approximation to the criterion L_1 and tabulated significance limits, etc.

³ See [1], p. 464.