ON A CLASS OF DISTRIBUTIONS THAT APPROACH THE NORMAL DISTRIBUTION FUNCTION¹

BY GEORGE B. DANTZIG

1. Formulation of the Problem. An important property of a sequence of binomial coefficients is that, when suitably normalized and transformed, it converges to the normal distribution.² The object of this paper is to exhibit a large class of other sequences which also possess this property.

The Pascal recurrence formula may be taken as the defining property of the binomial coefficients. Let the combination of n things taken x at a time be denoted by $\binom{n}{x}$. If we set $f_n(x) = (\frac{1}{2})^n \cdot \binom{n}{x}$ for $0 \le x \le n$ and $f_n(x) = 0$ for x < 0 or x > n, then $f_n(x)$ is defined for all integers x. With this notation Pascal's recurrence formula, $\binom{n}{x} = \binom{n-1}{x} + \binom{n-1}{x-1}$, may be written

(1)
$$f_n(x) = \frac{1}{2} [f_{n-1}(x) + f_{n-1}(x-1)],$$

where this new form is valid for all integers x extending from $-\infty$ to $+\infty$. In order to generalize, we may consider a sequence of distributions $f_1(x)$, $f_2(x)$, \cdots , $f_n(x)$, \cdots each defined in terms of the preceding one by means of the recurrence formula

(2)
$$f_n(x) = \frac{1}{a_n+1} [f_{n-1}(x-0) + f_{n-1}(x-1) + f_{n-1}(x-2) + \cdots + f_{n-1}(x-a_n)],$$

where the x are integers, and a_n is a positive integer which may change in value from one distribution to the next. The problem is to find conditions under which $f_n(x)$, in normalized form, approaches the normal distribution. The normalization of $f_n(x)$ is effected by the affine transformation

(3)
$$u = \frac{x - \bar{x}_n}{\sigma_n}; \qquad \varphi_n(u) = f_n(x),$$

¹ Presented November 21, 1938 before a joint meeting of the Columbia Mathematics Club and the Statistical Seminar of the Graduate School of the Department of Agriculture; also December 10, 1938 before a meeting of the American Mathematical Association at the University of Maryland.

² Due to DeMoivre, 1731. By a variable distribution approaching the normal distribution, we mean that the integral under the variable distribution between any two limits approaches the corresponding integral under the normal curve.