COMPARISON OF PEARSONIAN APPROXIMATIONS WITH EXACT SAMPLING DISTRIBUTIONS OF MEANS AND VARIANCES IN SAMPLES FROM POPULATIONS COMPOSED OF THE SUMS OF NORMAL POPULATIONS

By G. A. BAKER

1. Introduction. Biological and sociological data are often "non-homogeneous" and of such a nature as not to be easily separated into components. Non-homogeneous populations have been discussed by Karl Pearson, Charlier, and others. Non-normal material has been discussed by many writers. See for example, A. E. R. Church [1] and J. M. LeRoux [2] for a discussion of moments of the distributions of the means and variances for samples from non-normal material.

In a previous paper [3] the author has given the distributions of the means and standard deviations of samples from certain non-homogeneous populations. The purpose of the present paper is to extend the results given in [3] and to compare the moment approach of the Pearsonian school with the true distributions.

2. Moments of the distribution of means of samples of n from a non-homogeneous population. Consider a population with distribution

(2.1)
$$f(x) = \frac{1}{(1+k)\sqrt{2\pi}} \left[e^{-\frac{1}{2}x^2} + \frac{k}{\sigma} e^{-\frac{1}{2\sigma^2}(x-m)^2} \right].$$

The first four moments of (2.1) about x = 0 are

$$v'_{1} = \frac{km}{1+k}$$

$$v'_{2} = \frac{1}{1+k} \left[1 + k(\sigma^{2} + m^{2}) \right]$$

$$v'_{3} = \frac{km}{1+k} \left[3\sigma^{2} + m^{2} \right]$$

$$v'_{4} = \frac{1}{1+k} \left[3 + k(3\sigma^{4} + 6m^{2}\sigma^{2} + m^{4}) \right].$$

The means of samples of n drawn at random from (2.1) are distributed according to

$$(2.3) \qquad \frac{n}{\sqrt{2\pi(1+k)^n}} \left[\sum_{s=0}^n \binom{n}{s} \frac{k^s}{\sqrt{s\sigma^2+n-s}} \exp\left\{ -\frac{n^2\left(x-\frac{s}{n}m\right)^2}{s\sigma^2+n-s} \right\} \right].$$