ON THE PROBABILITY OF THE OCCURRENCE OF AT LEAST m EVENTS AMONG n ARBITRARY EVENTS

By Kai Lai Chung

Tsing Hua University, Kunming, China

Introduction. Let E_1, \dots, E_n , denote n arbitrary events. Let $p_{\nu_1' \dots \nu_i' \nu_i + 1 \dots \nu_j}$, where $0 \le i \le j \le n$ and (ν_1, \dots, ν_j) is a combination of the integers $(1, \dots, n)$, denote the probability of the non-occurrence of $E_{\nu_1}, \dots, E_{\nu_i}$ and the occurrence of $E_{\nu_{i+1}}, \dots, E_{\nu_j}$. Let $p_{[\nu_1 \dots \nu_i]}$ denote the probability of the occurrence of $E_{\nu_1}, \dots, E_{\nu_i}$ and no others among the n events. Let $S_j = \sum p_{\nu_1 \dots \nu_j}$ where the summation extends to all combinations of j of the n integers $(1, \dots, n)$. Let $p_m(\nu_1, \dots, \nu_k)$, $(1 \le m \le k \le n)$, denote the probability of the occurrence of at least m events among the k events $E_{\nu_1}, \dots, E_{\nu_k}$.

the occurrence of at least m events among the k events E_{ν_1} , \cdots , E_{ν_k} . By the set $(x_1, \dots, x_b, \dots, x_a) - (x_1, \dots, x_b)$ (where $b \leq a$) we mean the set (x_{b+1}, \dots, x_a) . And by a $\binom{a}{b}$ -combination out of (x_1, \dots, x_a) we mean a combination of b integers out of the a integers (x_1, \dots, x_a) .

We often use summation signs with their meaning understood, thus for a fixed $k, 1 \leq k \leq n$, the summations in $\sum p_{\nu_1 \dots \nu_k}$, or $\sum p_m(\nu_1, \dots, \nu_k)$, extend to all the $\binom{n}{k}$ -combinations out of $(1, \dots, n)$.

The following conventions concerning the binomial coefficients are made:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1, \qquad \begin{pmatrix} a \\ b \end{pmatrix} = 0 \qquad \text{if} \qquad a < b \qquad \text{or if} \qquad b < 0.$$

It is a fundamental theorem in the theory of probability that, if E_1, \dots, E_n are incompatible (or "mutually exclusive"), then

$$p_1(1, \cdots, n) = p_1 + \cdots + p_n$$

When the events are arbitrary, we have Boole's inequality

$$p_1(1, \cdots, n) \leq p_1 + \cdots + p_n.$$

Gumbel has generalized this inequality to the following:

$$p_1(1, \ldots, n) \leq \frac{\sum p_1(\nu_1, \ldots, \nu_k)}{\binom{n-1}{k-1}},$$

¹ C. R. Acad. Sc. Vol. 205(1937), p. 774.