where

$$u = \left[\alpha^2 (1 - \alpha) - \alpha \sigma_P^2\right] / \sigma_P^2$$

$$v = \left[\alpha (1 - \alpha)^2 - (1 - \alpha) \sigma_P^2\right] / \sigma_P^2.$$

This distribution can now be used to establish tolerance limits. For example, it follows from (1) that for a sample size $n \ge 214$, and a tolerance region given by the ellipse $T^2 = 9.21$, then E(P) = .99 and the Prob. $\{.985 \le P \le .995\} \ge .992$.

Care must be taken in the use of these and similar results, for if the distribution is not a bivariate normal one, a large error may be introduced which will not be eliminated with increasing n; however the error will probably be small when a tolerance region is found for the means \bar{x} , \bar{y} of a future sample of k observations ($k \geq 20$) as contrasted with a tolerance region for a single observation. An exact treatment of the case when the bivariate distribution is unknown has been given by Wald in the present issue of the *Annals of Mathematical Statistics*.

REFERENCES

- S. S. Wilks, "Determination of sample sizes for setting tolerance limits," Annals of Math. Stat., Vol. 12 (1941), pp. 91-96.
- [2] HAROLD HOTELLING, "A generalization of Student's ratio," Annals of Math. Stat., Vol. 2 (1931), pp. 360-378.

A NEW APPROXIMATION TO THE LEVELS OF SIGNIFICANCE OF THE CHI-SQUARE DISTRIBUTION.

By Leo A. Aroian

Hunter College

Recent articles on the percentage points of the χ^2 distribution [1], [2], have directed my attention to a method proposed in my investigation of Fisher's z distribution [3], a method particularly useful and easily computed for n large.

distribution [3], a method particularly useful and easily computed for
$$n$$
 large. In addition, this method avoids interpolation. If $t = \frac{\chi^2 - n}{\sqrt{2n}}$, and $\alpha_3 = \sqrt{\frac{8}{n}}$.

the measure of skewness for the χ^2 distribution, the following formulas give significance levels of t as quadratic functions of α_3 , $t = a + b\alpha_3 + c\alpha_3^2$. The values of a, b, and c were found by the usual method of least squares, fitting each formula to the values of t [4] for $\alpha_3 = 0$, ± 0.1 , ± 0.2 , ± 0.3 , and ± 0.4 . Then the value of a in each instance was adjusted to give the proper value of t when $\alpha_3 = 0$: e.g. the constant term by the method of least squares for the 1 per cent point is 2.32633 which we change to 2.32635. The range $|\alpha_3| \leq 4$ corresponds to $n \geq 50$, but the formulas are quite satisfactory for $n \geq 30$. Formulas for t when $|\alpha_3| > 4$ [3] are easily derived, but such results while more accurate in the range