GENERALIZATION OF POINCARÉ'S FORMULA IN THE THEORY OF PROBABILITY

By Kai Lai Chung

Tsing Hua University, Kunming, China

Let $p_{[m]}(1, \dots, n)$, $(0 \le m \le n)$ denote the probability of the occurrence of exactly m events among the n arbitrary events E_1, \dots, E_n ; and $p_m(1, \dots, n)$ $(1 \le m \le n)$ that of at least m. Let $p_{\nu_1 \dots \nu_i}$ $(1 \le i \le n)$, where $(\nu_1 \dots \nu_i)$ is a combination (without repetition) out of $(1, \dots, n)$, denote the probability of the occurrence of $E_{\nu_1}, \dots, E_{\nu_i}$ (without regard to the other events); and

$$S_0=1, \qquad S_i=\sum_{(\nu_1\cdots\nu_i)}p_{\nu_1\cdots\nu_i},$$

where the summation extends to all the combinations with i members out of $(1, \dots, n)$.

Then Poincaré's formula may be written as follows:

$$p_{[0]}(1, \dots, n) = \sum_{i=0}^{n} (-1)^{i} S_{i}.$$

An equivalent formula is:

$$p_1(1, \dots, n) = \sum_{i=1}^n (-1)^{i-1} S_i.$$

The following conventions concerning the binomial coefficients are made:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$$
, $\begin{pmatrix} a \\ b \end{pmatrix} = 0$ if $a < b$ or $b < 0$.

Two generalizations, possibly due to de Mises, are

$$p_{[m]}(1, \dots, n) = \sum_{i=m}^{n} (-1)^{(i-m)} {i \choose m} S_i;$$

$$p_m(1, \dots, n) = \sum_{i=m}^{n} (-1)^{(i-m)} {i-1 \choose m-1} S_i.$$

We notice that the probabilities appearing on the left-hand sides of these formulas are symmetrical with respect to the set of suffixes $(1, \dots, n)$, and the sums on the right-hand sides are symmetrical in the same way.

As a natural generalization let us consider a probability which is symmetrical with respect to certain sub-sets of $(1, \dots, n)$. We divide the n events into r sets:

$$E_{\nu_{11}}$$
, ..., $E_{\nu_{1n_1}}$; $E_{\nu_{21}}$, ..., $E_{\nu_{2n_2}}$; ...; $E_{\nu_{r1}}$, ..., $E_{\nu_{rn_r}}$;

where $n_1 + n_2 + \cdots + n_r = n$. And we ask for the probability that out of the first set of n_1 events exactly m_1 events occur; and out of the second set of n_2 events exactly m_2 events occur; and so on; and finally, out of the rth set of n_r events exactly m_r events occur. When this problem is solved the analogous problem