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Let pim(, - -+, n), (0 £ m < n) denote the probability of the occurrence of
exactly m events among the n arbitrary events Ey , --- , E, ; and pn(1, -+, n)
(1 £ m < n) that of at least m. Let p,,....;, (1 < ¢ < n), where (3 -+ »;)
is a combination (without repetition) out of (1, - - -, n), denote the probability
of the occurrence of E, , ---, E,, (without regard to the other events); and

So = 1, Si = Z Pryeeergs
(ppeeers)

where the summation extends to all the combinations with 7 members out of

(11 R} n)
Then Poincaré’s formula may be written as follows:

po(l, -+, m) = ;‘ (—=1)'Ss.
An equivalent formula is:

pl(ly ) n) = 1212 (—‘1)‘—18;.

The following conventions concerning the binomial coefficients are made:

0 a .
<0>—1, (b)=0 ifa<borb <O,

Two generalizations, possibly due to de Mises, are

Pl -, m = 3~ (£) 805

T=m

pull, -+ 1) = 2 (—1)“”'"’("“_11)3;.

i=m m

We notice that the probabilities appearing on the left-hand sides of these
formulas are symmetrical with respect to the set of suffixes (1, - -+, n), and the
sums on the right-hand sides are symmetrical in the same way.

As a natural generalization let us consider a probability which is symmetrical
with respect to certain sub-sets of (1, ---, n). We divide the n events into r
sets:

E"u y " ’El’ln‘ ;Ev“r e 1Ev2n2 y oo ;El’u y ©°° 7EVrn';

wheren; + ny + -+ + n, = n. And we ask for the probability that out of the

first set of n, events exactly m; events occur; and out of the second set of 72 events

exactly m. events occur; and so on; and finally, out of the rth set of n, events

exactly m, events occur. When this problem is solved the analogous problem
63
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