AN EXTENSION OF WILKS' METHOD FOR SETTING TOLERANCE LIMITS

By Abraham Wald

Columbia University

1. Introduction. Let x be a random variable and let f(x) be its probability density function. Suppose that nothing is known about f(x) except that it is continuous. Let x_1, \dots, x_n be n independent observations on x. The problem of setting tolerance limits can be formulated as follows: For some given positive values $\beta < 1$ and $\gamma < 1$ we have to construct two functions $L(x_1, \dots, x_n)$ and $M(x_1, \dots, x_n)$, called tolerance limits, such that the probability that

(1)
$$\int_{L}^{M} f(t) dt \geq \gamma,$$

holds, is equal to β . This problem has recently been solved by S. S. Wilks¹ in a very satisfactory way when nothing is known about f(x) except that it is continuous. Wilks proposes the following solution: Let x_1, \dots, x_n be the observed values of x arranged in order of increasing magnitude. Then $L = x_r$ and $M = x_{n-r+1}$ where r denotes a positive integer. The exact sampling distribution of the statistic $\int_{x_r}^{x_{n-r+1}} f(t) dt$ is derived by Wilks and this provides the solution for the problem of setting tolerance limits. A very important feature of Wilks' solution is the fact that the distribution of $\int_{x_r}^{x_{n-r+1}} f(t) dt$ is entirely independent

of the unknown density function f(x), i.e. the distribution of $\int_{x_r}^{x_{n-r+1}} f(t) dt$ is the same for any arbitrary continuous density function f(x).

In this paper we shall give an extension of Wilks' method to the multivariate case. Let x_1, \dots, x_p be a set of p random variables with the joint probability density function $f(x_1, \dots, x_p)$. Suppose that nothing is known about $f(x_1, \dots, x_p)$ except that it is a continuous function of x_1, \dots, x_p . A sample of n independent observations is drawn and the α -th observation on x_i is denoted by $x_{i\alpha}$ ($i = 1, \dots, p$; $\alpha = 1, \dots, n$). The problem of setting tolerance limits for x_1, \dots, x_p can be formulated as follows: For some given positive values $\beta < 1$ and $\gamma < 1$ we have to construct p pairs of functions of the observations $L_i(x_{11}, \dots, x_{pn})$ and $M_i(x_{11}, \dots, x_{pn})$ ($i = 1, \dots, p$) such that the probability that

(2)
$$\int_{L_n}^{M_p} \cdots \int_{L_1}^{M_1} f(t_1, \cdots, t_p) dt_1 \cdots dt_p \geq \gamma,$$

¹S. S. Wilks, "Determination of sample sizes for setting tolerance limits," Annals of Math. Stat., Vol. 12 (1941).