NOTE ON A LEMMA

BY ABRAHAM WALD

Columbia University

In a previous paper on the power function of the analysis of variance test¹, the author stated the following lemma (designated there as Lemma 2):

LEMMA 2. Let v_1, \dots, v_k be k normally and independently distributed variates with a common variance σ^2 . Denote the mean value of v_i by α_i $(i = 1, \dots, k)$ and let $f(v_1, \dots, v_k, \sigma)$ be a function—the variables v_1, \dots, v_k and σ which does not involve the mean values $\alpha_1, \dots, \alpha_k$. Then, if the expected value of $f(v_1, \dots, v_k, \sigma)$ is equal to zero, $f(v_1, \dots, v_k, \sigma)$ is identically equal to zero, except perhaps on a set of measure zero.

In the paper mentioned above it was intended to state this lemma for bounded functions $f(v_1, \dots, v_k)$ and the lemma was used there only in a case where $f(v_1, \dots, v_k)$ is bounded. Through an oversight this restriction on $f(v_1, \dots, v_k)$ was not stated explicitly. The published proof of Lemma 2 is adequate if $f(v_1, \dots, v_k)$ is assumed to be bounded. From the fact that the moments of a multivariate normal distribution determine uniquely the distribution it is concluded there that if for any set (r_1, \dots, r_k) of non-negative integers

$$(1) \qquad \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} v_1^{r_1} \cdots v_k^{r_k} f(v_1, \dots, v_k) e^{-\frac{1}{2} \sum (v_i - \alpha_i)^2} dv_1 \cdots dv_k = 0$$

identically in the parameters $\alpha_1, \dots, \alpha_k$ then $f(v_1, \dots, v_k)$ must be equal to zero except perhaps on a set of measure zero. This conclusion is obvious if $f(v_1, \dots, v_k)$ is bounded. In fact, from (1) and the boundedness of $f(v_1, \dots, v_k)$ it follows that there exists a finite value A such that

$$\varphi(v_1, \dots, v_k) = \frac{1}{(2\pi)^{k/2}} \left[1 - \frac{1}{A} f(v_1, \dots, v_k) \right] e^{-\frac{1}{2} \sum (v_i - \alpha_i)^2}$$

is a probability density function with moments equal to those of the normal distribution

$$\psi(v_1, \dots, v_k) = \frac{1}{(2\pi)^{k/2}} e^{-\frac{1}{2}\sum (v_i - \alpha_i)^2}.$$

Hence $f(v_1, \dots, v_k)$ must be equal to zero except perhaps on a set of measure zero. However, this conclusion is not so immediate if no restriction is imposed on $f(v_1, \dots, v_k)$ except that

(2)
$$\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} |f(v_1, \dots, v_k)| e^{-\frac{1}{2} \sum (v_i - \alpha_i)^2} dv_1 \cdots dv_k < \infty$$

for all values of the parameters $\alpha_1, \dots, \alpha_k$. It is the purpose of this note to prove this. In other words, we shall prove the following proposition:

¹ A. Wald, "On the power function of the analysis of variance test," Annals of Math. Stat., Vol. 13 (1942), pp. 434.

² I wish to thank Prof. J. Neyman for calling my attention to this omission.