NOTES

This section is devoted to brief research and expository articles, notes on methodology and other short items.

A COMBINATORIAL FORMULA AND ITS APPLICATION TO THE THEORY OF PROBABILITY OF ARBITRARY EVENTS¹

By Kai-Lai Chung and Lietz C. Hsu

National Southwest Associated University, Kunming, China

An important principle, known as a proposition in formal logic or the method of cross-classification can be stated as follows.¹

Let F and f be any two functions of combinations out of $(\nu) = (1, 2, \dots, n)$. Then the two formulas

(1.1)
$$F((\alpha)) = \sum_{(\beta) \in (\gamma) - (\alpha)} f((\alpha) + (\beta))$$

(2.1)
$$f((\alpha)) = \sum_{(\beta) \in (\alpha) - (\alpha)} (-1)^b F((\alpha) + (\beta))$$

are equivalent.

As an immediate application to the theory of probability of arbitrary events, we have the set of inversion formulas²

(3.1)
$$p((\alpha)) = \sum_{(\beta) \in (\beta) - (\alpha)} p[(\alpha) + (\beta)]$$

(4.1)
$$p[(\alpha)] = \sum_{(\beta) \in (x) - (\alpha)} (-1)^b p((\alpha) + (\beta))$$

where $p((\alpha))$ is the probability of the occurrence of at least E_{α_1} , E_{α_2} , \cdots , E_{α_a} out of n arbitrary events E_1 , E_2 , \cdots , E_n and $p[(\alpha)]$ is the probability of the occurrence of E_{α_1} , E_{α_2} , \cdots , E_{α_a} and no others among the n events, $(\alpha_1, \alpha_2, \cdots, \alpha_a)$ denoting a combination of the integers $(1, 2, \cdots, n)$. They can be made to play a central rôle in the theory, since they supply a method for converting the fundamental systems of probabilities, $p[(\alpha)]$ and $p((\alpha))$, one into the other.

We may further generalize (1.1) and (2.1) by considering combinations with repetitions. Let such a combination be written as

$$(\alpha) = (\alpha^r)^- = (\alpha_1^{r_1} \alpha_2^{r_2} \cdots \alpha_a^{r_a})$$

¹ For the notations and definitions see K. L. CHUNG, "On fundamental systems of probabilities of a finite number of events," *Annals of Math. Stat.*, Vol. 14 (1943), pp. 123-133.

² Cf. Fréchet, Les probabilités associées à un système d'événements compatibles et dépendants, Hermann, Paris (1939), formulas (55) and (58).