ON THE POWER FUNCTIONS OF THE E^2 -TEST AND THE T^2 -TEST

By P. L. Hsu

National University of Peking

1. The general linear hypothesis. Every linear hypothesis about a p-variate normal population or several such populations having common variances and covariances is reducible to the following canonical form [4]: The sample distribution, when nothing whatever has been discarded from the whole sample, being

$$(2\pi)^{-\frac{1}{2}p(m+n)} |\alpha_{ij}|^{\frac{1}{2}(m+n)} \exp\left\{-\frac{1}{2} \sum_{i,j=1}^{p} \alpha_{ij} \sum_{r=1}^{m} (y_{ir} - \eta_{ir})(y_{jr} - \eta_{jr}) - \frac{1}{2} \sum_{i,j=1}^{p} \alpha_{ij} \sum_{s=1}^{n} z_{is} z_{js}\right\} \prod dy dz$$

$$(n \geq p),$$

where the η_{ir} and the α_{ij} are unknown, the hypothesis to be tested is

$$H: \eta_{ir} = 0 \quad (i = 1, \dots, p; r = 1, \dots, n_1, n_1 \leq m).$$

It is clear that the y_{ir} $(i = 1, \dots, p; r = n_1+1, \dots, m)$ can have no use. Also, the only useful quantities supplied by the set z_{is} are the statistics

$$b_{ij} = \sum_{s=1}^n z_{is} z_{js},$$

because the remaining quantities may be regarded as a set of angles which are independent of y_{ir} and the b_{ij} and which has a known distribution free from any unknown parameter in (1), [2]. After discarding the irrelevant y's and the angles there results the reduced sample distribution

$$\frac{K |\alpha_{ij}|^{\frac{1}{2}(n_1+n)} |b_{ij}|^{\frac{1}{2}(n-p-1)} \exp \left\{ -\frac{1}{2} \sum_{i,j=1}^{p} \alpha_{ij} \cdot \sum_{r=1}^{n_1} (y_{ir} - \eta_{ir})(y_{jr} - \eta_{jr}) - \frac{1}{2} \sum_{i,j=1}^{p} \alpha_{ij} b_{ij} \right\} \Pi \ dy \ db.$$

Hereafter the indices i, j and r shall have the following ranges:

$$i, j = 1, \cdots, p, \qquad r = 1, \cdots, n_1,$$

and the convention that repetition of an index indicates summation will be adopted. Writing

$$a_{ij} = y_{ir}y_{ir}, \qquad c_{ij} = a_{ij} + b_{ij},$$

we obtain the distribution of the y_{ir} and the c_{ij} :

(2)
$$K |\alpha_{ij}|^{\frac{1}{2}(n_1+n)} |c_{ij} - a_{ij}|^{\frac{1}{2}(n-p-1)} \exp \left(-\frac{1}{2}\alpha_{ij}c_{ij} + \alpha_{ij}y_{ir}\eta_{jr} - \frac{1}{2}\alpha_{ij}\eta_{ir}\eta_{jr}\right) \prod dy dc.$$

$$278$$