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4. Sampling from F(z) = fo He™dt, (0 <z < w; H>0). If Fz) =

‘l He #*dt, the probability function of S can be determined but is very cumber-

some in the form in which it is known to the writer. The characteristic function,
say g(6), of the probability funetion of S will be given instead. By use of (2.1)
it can be shown that:
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where 7 = /—1.

The expected value, E(S), and variance, o3, of S are:
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INFORMATION GIVEN BY ODD MOMENTS

By Epmunp CHURCHILL
Rutgers University

The widespread use of the third moment about the mean as a measure of skew-
ness and the belief engendered by this use that a distribution is symmetric if its
third moment is zero prompt the question of how much information about a
distribution can be deduced from a knowledge of its odd moments. An answer
to this question is: Let F(x), a cumulative distribution function; {pen—}, (n = 1,

-+), a sequence of real numbers; and € > 0 be arbitrary. There exisis a c.d.f.,
F*(z), having as odd moments the terms of the given sequence and such that

(1) | Fiz) — F¥=) | < & all x.
If the mean of F(z) is equal to u; and the variance of F(z) is not zero, it can be

gshown that F*(x) may be chosen so that in addition the variance of F*(z) is

equal to that of F(z).
An immediate consequence of our statement is that a distribution need not be

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

&4

The Annals of Mathematical Statistics. IKOJN ®

www.jstor.org



