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1. Let X,, X,, -+, X be independent random variables with expectations

E(X,) = e;j and variances ¢’(X;) = ¢; forj = 1, 2, -+- , n. The question
n X' —_ p.)2

may be asked: What is the upper bound for the probability P(E(—itge—') > 1)
=1 i

that the point (X;, X, ---,X,) does not fall inside of the ellipsoid
n X —_ p.)2
E( i . é;) = 17
pr= S 7
For n = 1 the answer to this question is given by Tshebyshev’s inequality
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which can not be improved without further assumptions. By a trivial generali-
zation of the argument leading to (1.1) one can prove the inequality
2 (X — e)2 n g2
(1.2) P(Z(—#—z—q’—)- > 1) <>%
= S 71 i=lj
for any integer n. This inequality, however, can be improved for n > 2. In
particular, for n = 2, the following theorem will be proved:
TeEOREM 1.1. Let X and Y be independent random variables, with expectations
E(X) = X,, E(Y) = Y, and variances o , oy . Then, for any s > 0, t > 0
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such that f;—f < ‘—;21 we have
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