A LOWER BOUND FOR THE VARIANCE OF SOME UNBIASED SEQUENTIAL ESTIMATES

By D. Blackwell and M. A. Girshick

Howard University and Bureau of the Census

Consider a sequence of independent chance variables x_1, x_2, \cdots with identical distributions determined by an unknown parameter θ . We assume that $E x_i = \theta$ and that $W_k = x_1 + \cdots + x_k$ is a sufficient statistic for estimating θ from x_1, \dots, x_k . A sequential sampling procedure is defined by a sequence of mutually exclusive events S_k such that S_k depends only on x_1, \dots, x_k and $\sum P(S_k) = 1$. Define $W = W_k$ and n = k when S_k occurs. In a previous paper by one of the authors [1] it was shown that if $S_k = W_k C(S_1 + \cdots + S_{k-1})$, (where C(A) denotes the event that A does not occur), the function $V(W, n) = E(x_1 | W, n)$ is an unbiased estimate of θ , and $\sigma^2(V) \leq \sigma^2(x_1)$. It is the purpose of this note to obtain a lower bound for $\sigma^2(V)$. Our result is:

Theorem 1.
$$\sigma^2(V) \geq \frac{\sigma^2(x_1)}{E(n)}$$
.

We remark that the lower bound is actually attained in the classical case of samples of constant size N. For in this case, (see [1]), $V = E(x_1 \mid W_N) = W_N/N$. In fact we shall show that in a sense this is the only case in which the lower bound is attained.

The proof of Theorem I depends on certain properties of sums of independent chance variables. These, formulated more generally than is required for the proof of Theorem I, are given in

THEOREM II. Let x_1 , x_2 , \cdots be independent chance variables with identical distributions, having mean θ and variance $\sigma^2(x_1)$. Let furthermore $\{S_k\}$ be any sequential test for which E(n) is finite. Let $W = x_1 + \cdots + x_k$ when n = k. Then

- (a) $\sigma^{2}(W \theta n) < \sigma^{2}(x_{1}) E(n)$.
- (b) If $\sigma^2(n)$ is finite, the equality sign holds in (a).
- (c) $E[x_1(W \theta n)] = \sigma^2(x_1)$.

PROOF OF (a). Write $y_i = x_i - \theta$, and define $Y = y_1 + \cdots + y_k$ when n = k. By definition,

(1)
$$\sigma^{2}(W - \theta n) = \sum_{k=1}^{\infty} \int_{S_{k}} (y_{1} + \cdots + y_{k})^{2} dP.$$

To prove (a), we must verify that the series on the right of expression (1) converges and has sum $\leq \sigma^2(x_1)E(n)$. Now

$$\sum_{k=1}^{N} \int_{S_{k}} (y_{1} + \cdots + y_{k})^{2} dP$$

$$\leq \sum_{k=1}^{N-1} \int_{S_{k}} (y_{1} + \cdots + y_{k})^{2} dP + \int_{n \geq N} (y_{1} + \cdots + y_{N})^{2} dP$$

$$= \sum_{k=1}^{N} \int_{n \geq k} y_{k}^{2} dP + 2 \sum_{k=2}^{N} \int_{n \geq k} y_{k} (y_{1} + \cdots + y_{k-1}) dP.$$