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Thus,
) =2[1 — P(Z, = t)]

(= b T VO e+ 0 -}

and in view of the identity

Zz (=1 (Z) (w — K" = nl

P(| 2|
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this becomes

rizzo=2 = or(P)[pe+rn -k = w0

n! (n/2)(1+1) <ksn

for 0 = ¢t £ 1. The random variable i—) is obviously more peaked about zero

than Z. Since f—: and Z fulfil the assumptions of Theorem 1, it follows that

%’ is more peaked about zero than Z,, , that is
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Setting at = y, one obtains (4.1).
For n — o« the function ¥,(t) approaches asymptotically the probability
P(| X | = tv/3n) for the normalized normal random variable X.! For n = 8
one obtains the following values which indicate a good approximation:

zt)_s_P(lZﬂl = 1) = W,() for ¢t = 0.

t 3998 5254 6711
P(X|=2tv/24) .05 01 .001
Ws(?) 049 0092  .0005.

For smaller values of n, ¥,(f) can be easily computed.
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A METHOD FOR OBTAINING RANDOM NUMBERS

By H. Burke Horron
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The need for large quantities of random numbers to be used in sample design,
subsampling, and other statistical problems is well known. Tippett’s [1] num-
bers have been widely used for these purposes, despite criticism directed at
their lack of randomness. The following procedure may be of interest to those

¢ Cramér, op. cit., p. 245.
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