Thus,

$$\begin{split} P(||\bar{Z}_n|| \ge t) &= 2[1 - P(\bar{Z}_n \le t)] \\ &= 2 \left\{ 1 - \frac{1}{n!} \sum_{i \le (n/2)(t+1)} (-1)^i \binom{n}{i} \left[\frac{n}{2} (t+1) - i \right]^n \right\}, \end{split}$$

and in view of the identity

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} (u - k)^{n} = n!$$

this becomes

$$P(||\bar{Z}_n|| \ge t) = \frac{2}{n!} \sum_{(n/2)(t+1) \le k \le n} (-1)^k \binom{n}{k} \left[\frac{n}{2} (t+1) - k \right]^n = \Psi_n(t)$$

for $0 \le t \le 1$. The random variable $\frac{Y}{a}$ is obviously more peaked about zero than Z. Since $\frac{Y}{a}$ and Z fulfil the assumptions of Theorem 1, it follows that $\frac{\bar{Y}_n}{a}$ is more peaked about zero than \bar{Z}_n , that is

$$P\left(\left|\frac{\bar{Y}_n}{a}\right| \ge t\right) \le P(\left|\bar{Z}_n\right| \ge t) = \Psi_n(t) \text{ for } t \ge 0.$$

Setting at = y, one obtains (4.1).

For $n \to \infty$ the function $\Psi_n(t)$ approaches asymptotically the probability $P(|X| \ge t\sqrt{3n})$ for the normalized normal random variable X. For n = 8 one obtains the following values which indicate a good approximation:

t
.3998
.5254
.6711

$$P(|X| \ge t\sqrt{24})$$
.05
.01
.001

 $\Psi_8(t)$
.049
.0092
.0005.

For smaller values of n, $\Psi_n(t)$ can be easily computed.

A METHOD FOR OBTAINING RANDOM NUMBERS

By H. Burke Horton

Interstate Commerce Commission

The need for large quantities of random numbers to be used in sample design, subsampling, and other statistical problems is well known. Tippett's [1] numbers have been widely used for these purposes, despite criticism directed at their lack of randomness. The following procedure may be of interest to those

⁴ Cramér, op. cit., p. 245.