BOUNDS FOR SOME FUNCTIONS USED IN SEQUENTIALLY TESTING
THE MEAN OF A POISSON DISTRIBUTION!
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1. Introduction. Let z = log ;((—:’—%)2, where f(z, \:) = (¢™ \i)/xl,
) 0.

(¢ = 0, 1), is the elementary probability law of a Poisson variate X, under the .

hypothesis that the mean is equal to X;. Without loss of generality we shall
assume A1 > Ao.

Let H, be the hypothesis that the distribution of X is given by f(x, No). Wald
[1, pp. 286-287] has devised general upper and lower bounds for the probability
of accepting Hy , when M is the true value of the parameter, and the sequential
probability ratio test is used. This probability is called the operating-charac-
teristic function and is designated by L(A). Using these results he has com-
puted the bounds for the binomial and normal distributions [2, pp. 137-142].
We shall do the same thing for the Poisson distribution, since the restrictions
[1, p. 284, conditions I to III] under which these general limits are valid can
rather easily be shown to apply to the Poisson distribution, if we make the fur-
ther restriction that E(z) = 0.

These general results are
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where «, 8 are probabilities of committing errors of the first and second kind re-
spectively and

A=Q10-8)/a, B=g/{1-oa)
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and % is the non-zero root of the expression, Ee*' = 1. Hence the only remaining
unknowns are 5 and 6.

1 The author is indebted to Professor A. Wald for suggesting the problem which led to
this note and for helpful discussions.
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