A RANDOM VARIABLE RELATED TO THE SPACING OF SAMPLE VALUES ## By B. SHERMAN¹ ## University of Southern California 1. Introduction and summary. Let x be a random variable with continuous distribution function F(x). Then y = F(x) is a random variable uniformly distributed over [0, 1]. If x_1, x_2, \dots, x_n is an ordered sample of n values from the population F(x) then y_1, y_2, \dots, y_n ($y_i = F(x_i)$) is an ordered sample of n values from a uniform distribution over [0, 1]. For n large it is reasonable to expect that the y_i should be fairly uniformly spaced. Measures of the deviation from uniform spacing can be devised in various ways. Thus Kimball [2] has studied the random variable $$\alpha = \sum_{i=1}^{n+1} \left(F(x_i) - F(x_{i-1}) - \frac{1}{n+1} \right)^2$$ where $x_0 = -\infty$ and $x_{n+1} = +\infty$, conjecturing that $\alpha^{\frac{1}{2}}$ is asymptotically normally distributed. Moran [3] has studied the random variable $$\beta = \sum_{i=1}^{n+1} (F(x_i) - F(x_{i-1}))^2,$$ which differs from α only by the quantity $-2/(n+1) + (n+1)^{-2}$, and has proved that β is asymptotically normally distributed. Somewhat related to these two random variables is the quantity ω^2 introduced by Smirnoff [4]. This is $$\omega^2 = n \int_{-\infty}^{\infty} (F(x) - F^*(x))^2 dF(x),$$ although it is slightly more generally defined in Smirnoff's paper. Here $F^*(x)$ is the sample distribution function ([1], page 325) of a sample of n values from the population with continuous distribution function F(x). The variable ω^2 may be written ([1], page 451) $$\omega^2 = \frac{1}{12n} + \sum_{i=1}^n \left(F(x_i) - \frac{2i-1}{2n} \right)^2.$$ (2i-1)/2n is the midpoint of the interval ((i-1)/n, i/n). Thus, if [0, 1] is partitioned into n equal subintervals then ω^2 measures the deviation of the sample values $y_i = F(x_i)$, $i = 1, 2, \dots, n$, from the midpoints of these intervals. Smirnoff has investigated the asymptotic behavior of ω^2 obtaining a rather complicated non-normal asymptotic distribution. Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to ¹ I wish to thank Professors J. W. Tukey and S. S. Wilks for their helpful suggestion and criticism. 339