NOTES

A GENERAL CONCEPT OF UNBIASEDNESS

By E. L. LEHMANN

University of California, Berkeley, and Princeton University

The term unbiasedness was introduced by Neyman and Pearson [1] in connection with hypothesis testing. A test of the hypothesis $\theta \varepsilon \omega$ against the alternatives $\theta \varepsilon \Omega - \omega$ is said to be unbiased at level α if its power function β satisfies

(1)
$$\beta(\theta) \leq \alpha \text{ for } \theta \in \omega, \\ \beta(\theta) \geq \alpha \text{ for } \theta \in \Omega - \omega.$$

In 1937 Neyman [2] developed a theory of estimation by confidence sets. He established a duality with the theory of hypothesis testing, so that to each notion of one theory corresponds an analogous one in the other. In particular, he defined a family of confidence sets A(x) to be unbiased if

(2)
$$P_{\theta}(A(X) \supset \theta') \leq P_{\theta}(A(X) \supset \theta) \text{ for all } \theta \text{ and } \theta'.$$

While the above two definitions are closely related, a third use of the term unbiasedness was made in a rather different context. In presenting their version of the Gauss-Markov theorem on least squares David and Neyman [3] defined a point estimate $\delta(X)$ of $g(\theta)$ to be unbiased if its expectation coincides with the estimated value, that is, if

(3)
$$E_{\theta}\delta(X) \equiv g(\theta).$$

It was pointed out later by Brown [4] that one obtains other analogous definitions by postulating that some central value of the distribution of $\delta(X)$ other than the mean coincides with the estimated value. Using the median as an example he defined $\delta(X)$ to be median-unbiased if

(4)
$$P_{\theta}(\delta(X) > q(\theta)) = P_{\theta}(\delta(X) < q(\theta)) \text{ for all } \theta.$$

In view of Wald's theory of decision functions [5] it seems tempting to try to give a definition of unbiasedness at the level of generality of this theory. Suppose we are concerned with a decision problem where the loss resulting from a decision $\delta(X)$ is $W(\theta, \delta(X))$ when the true parameter value is θ . In analogy with (2) we shall say that a decision procedure $\delta(X)$ is unbiased if for each θ

(5)
$$E_{\theta}W(\theta', \delta(X)) = \min \text{ when } \theta' = \theta.$$

This clearly reduces to Neyman's definition for confidence sets if one uses for loss function,

(6)
$$W(\theta, \delta(x)) = \begin{cases} 0 \text{ if the confidence set } \delta(x) \text{ covers } \theta, \\ 1 \text{ otherwise.} \end{cases}$$