NOTES

NOTE ON WILCOXON'S TWO-SAMPLE TEST WHEN TIES ARE PRESENT

By J. Hemelrijk

Mathematical Centre, Amsterdam

Wilcoxon's parameterfree two-sample test (cf. Wilcoxon [1]; H. B. Mann and D. R. Whitny [2]) depends on a statistic U with the following definition: If x_1, \dots, x_n and y_1, \dots, y_m are the two samples, U is the number of pairs (i, j) with $x_i > y_j$. The probability distribution of U, under the hypothesis that the samples have been drawn independently from the same *continuous* population, has been derived by Mann and Whitney. The influence of ties on this probability distribution has not been investigated as yet.

It is noteworthy that Wilcoxon's U is closely connected with the quantity S, which Kendall (cf. e.g. Kendall [3]) introduced in the theory of rank correlation. When r pairs of numbers (u_k, v_k) are given, S is computed by scoring:

$$-1, \text{ if } (u_h - u_k) (v_h - v_k) < 0,$$

$$0, \text{ if } (u_h - u_k) (v_h - v_k) = 0,$$

$$+1, \text{ if } (u_h - u_k) (v_h - v_k) > 0,$$

and adding the scores for all pairs (h, k) with h < k. If, in this definition, we take r = n + m and substitute the values $x_1, \dots, x_n, y_1, \dots, y_m$ in this order for $u_1, \dots, u_n, u_{n+1}, \dots, u_r$, and 0 or 1 respectively for v_k if $u_k = x_i$ for some i or $u_k = y_j$ for some j respectively, then the following relation holds:

$$(1) 2U + S = nm.$$

The simplest way to see this is by considering the total score of 2U + S for every pair (h, k). This score is equal to +1 if $v_h = 0$ and $v_k = 1$, and 0 otherwise. The sum of the scores is therefore nm.

Relation (1) holds if no ties are present among the two samples x_1, \dots, x_n and y_1, \dots, y_m . It is natural to define U in general by extending (1) to the case when there are ties. Since for a pair (x_i, y_j) with $x_i = y_j$ the score of S is equal to zero, the score for U must be taken as $\frac{1}{2}$ for such a pair.

Now Kendall has derived the mean and the standard deviation of S under the hypothesis that for a given order of the quantities v_1, \dots, v_r all the r! possible permutations of u_1, \dots, u_r are equally probable. This condition is fulfilled in our case if the samples x_1, \dots, x_n and y_1, \dots, y_m have been drawn at random from the same population (which need not be continuous anymore). Therefore, the mean and standard deviation of U under the null hypothesis may be derived from Kendall's formulas.