NOTES

A MARKOV CHAIN DERIVATION OF DISCRETE DISTRIBUTIONS

By F. G. FOSTER

Magdalen College, Oxford

Let an irreducible, aperiodic Markov chain have the matrix of transition probabilities, $\mathbf{A} = [p_{ij}] (i, j = 0, 1, 2, \cdots)$. Then as usual we shall have

$$p_{ij} \geq 0$$
 for all i and j , $\sum_{i=0}^{\infty} p_{ij} = 1$ for all i .

It is known ([1], p. 325) that the *n*th power of **A**, \mathbf{A}^n , tends to a limiting matrix as $n \to \infty$

$$\lim_{n\to\infty}\mathbf{A}^n = \mathbf{B},$$

and B will either be null or have the identical rows,

$$\mathbf{x} = (x_0, x_1, \cdots),$$

such that $x_i > 0$ for all i and $\sum_{i=0}^{\infty} x_i = 1$. Moreover we shall have

$$xA = x$$
.

In this way we may make correspond to any matrix \mathbf{A} , of the type under consideration, either the null vector or a probability distribution represented by \mathbf{x} . Conversely, to any distribution \mathbf{x} there will correspond a matrix \mathbf{A} (not necessarily unique). A method of constructing such a matrix is given below and illustrated with some examples.

Let $\{a_i\}$ $(i = 0, 1, 2, \cdots)$ be a sequence of positive numbers and define $A_n = \sum_{i=0}^n a_i$ $(n = 0, 1, 2, \cdots)$. Now let

$$\mathbf{A} = \begin{bmatrix} \frac{a_0}{A_1} & \frac{a_1}{A_1} & 0 & 0 & 0 & \cdots \\ \frac{a_0}{A_2} & \frac{a_1}{A_2} & \frac{a_2}{A_2} & 0 & 0 & \cdots \\ \frac{a_0}{A_3} & \frac{a_1}{A_3} & \frac{a_2}{A_3} & \frac{a_3}{A_3} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}.$$

Then A satisfies the usual conditions for being a transition probability matrix;

¹ For definitions of all terms used see [1].