ON DISTRIBUTION-FREE STATISTICS1

By Z. W. BIRNBAUM AND H. RUBIN

University of Washington and Stanford University

- 1. Introduction. Let X_1 , X_2 , \cdots , X_n be a sample of a one-dimensional random variable X which has the continuous cumulative probability function F. It has been observed [1] that, to the authors' knowledge, all distribution-free statistics considered in the past can be written in the form $\Phi[F(X_1), F(X_2), \cdots, F(X_n)]$ where Φ is a measurable symmetric function defined on the unitcube $\{U:0 \leq U_i \leq 1, i=1,2,\cdots,n\}$. It is the purpose of this paper to study the relationship between the class of statistics which can be written in this particular form and the class of distribution-free statistics.
- 2. Distribution-free statistics and statistics of structure (d). Let Ω and Ω' be two families of cumulative probability functions. A real quantity $W = S(X_1, X_2, \dots, X_n, G)$ will be called a *statistic in* Ω with regard to Ω' if, for any $G \in \Omega$, $F \in \Omega'$, and X_1, X_2, \dots, X_n in the *n*-dimensional sample-space for a random variable X which has the cumulative probability function F,
- (i) $S(X_1, X_2, \dots, X_n, G)$ is defined almost everywhere in the sample-space X_1, X_2, \dots, X_n (i.e. with the possible exception of a set of probability zero), and
- (ii) $W = S(X_1, X_2, \dots, X_n, G)$ has a probability distribution; this probability distribution will be denoted by $\mathcal{O}(W; F) = \mathcal{O}[S(X_1, X_2, \dots, X_n, G); F]$.

For example, Kolmogorov's statistic

$$(2.1) D_n = \sup_{-\infty < x < \infty} |F_n(x) - G(x)|,$$

where F_n is the empirical cumulative distribution function determined by the sample X_1, X_2, \dots, X_n , satisfies (i) and (ii) when $\Omega = \Omega' = \Omega_1$, the class of all nondegenerate cumulative probability functions², hence D_n is a statistic in Ω_1 with regard to Ω_1 .

If for a statistic $S(X_1, X_2, \dots, X_n, G)$ in Ω with regard to Ω' there exists a function Φ defined on the *n*-dimensional unit cube and symmetric in its arguments, such that for any $G \in \Omega$, $F \in \Omega'$ we have

$$S(X_1, X_2, \dots, X_n, G) = \Phi[G(X_1), G(X_2), \dots, G(X_n)]$$

Received 8/6/53.

¹ Work done under the sponsorship of the Office of Naval Research.

² The notations for various classes of cumulative probability functions are those introduced by Scheffé [2].

593