under equivalence [S, P]. A subfield equivalent to a statistic need not itself be a statistic. In an attempt to avoid this difficulty, one may define a *pseudo-statistic* as any subfield equivalent to a statistic. If Lemma 3 remained valid for pseudo-statistics in the sense that a member of C_{π} is a pseudo-statistic if and only if it is equivalent to S_{π} , this would establish the desired result.

The following example shows that this stronger version of Lemma 3 is not correct. Let S_{π} be the class of all Lebesgue sets on the real line and S_0 the class of all Lebesgue sets differing only by a set 0 from a set symmetric with respect to the origin. Clearly, $\{x\} \in S_0$ for all x so that $S_0 \in C_{\pi}$. Also S_0 is a pseudo-statistic since it is equivalent to the subfield induced by T(x) = |x|. But clearly S_0 and S_{π} are not equivalent.

REFERENCES

- R. Bahadur, "Sufficiency and statistical decision functions," Ann. Math. Stat., Vol. 25 (1954), pp. 423-462.
- [2] P. R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, 1950.
- [3] E. L. LEHMANN AND H. SCHEFFÉ, "Completeness, similar regions, and unbiased estimation. Part I," Sankhyā, Vol. 10 (1950), pp. 305-340.

A NOTE ON CONFIDENCE SETS FOR RANDOM VARIABLES

LIONEL WEISS

University of Virginia

Suppose the chance variables $X_1, \dots, X_m, Y_1, \dots, Y_n$ have a joint probability distribution depending on the unknown parameters $\theta_1, \dots, \theta_k$, but otherwise of known form. We assume that there is a set of sufficient statistics for

$$\theta_1, \dots, \theta_k$$
, denoted by $T_1(X_1, \dots, X_m, Y_1, \dots, Y_n), \dots$

 $T_r(X_1, \dots, X_m, Y_1, \dots, Y_n)$. We shall let X denote the vector (X_1, \dots, X_m) , Y the vector (Y_1, \dots, Y_n) , θ the vector $(\theta_1, \dots, \theta_k)$, and T(X, Y) the vector $(T_1(X, Y), \dots, T_r(X, Y))$. $P_{\theta}(A)$ shall denote the probability of A when the vector of parameters equals θ , and $P_{\theta}(A \mid B)$ shall denote the conditional probability of A given B when the vector of parameters equals θ .

Given a number α between 0 and 1, if for each vector X we can find a set S(X) in n-dimensional Euclidean space such that $P_{\theta}(Y \text{ in } S(X)) = \alpha$ identically in θ , then the system of sets S(X) is called a "parameter-free confidence set of level α for the random vector Y."

Since T(X, Y) is a set of sufficient statistics for θ , the joint conditional distribution of Y given that $T(X, Y) = t = (t_1, \dots, t_r)$ is independent of θ . But then for any given vector t, it is possible to construct a region S'(t) in n-dimensional Euclidean space such that $P_{\theta}(Y \text{ in } S'(t) \mid T(X, Y) = t) = \alpha$ identically in θ

Received April 7, 1954, revised November 10, 1954.