ESTIMATES FOR GLOBAL CENTRAL LIMIT THEOREMS

By RALPH PALMER AGNEW

Cornell University

1. Introduction. Let ξ_1 , ξ_2 , \cdots be independent random variables having the same d.f. (distribution function) F(x). Thus, for each $k = 1, 2, 3, \cdots$

(1.1)
$$\Pr\{\xi_k \le x\} = F(x), \qquad -\infty < x < \infty,$$

where F(x) is a real monotone increasing function for which $F(-\infty) = 0$ and $F(\infty) = 1$. Let $\phi(t)$, defined by

(1.2)
$$\phi(t) = \int_{-\infty}^{\infty} e^{itx} dF(x), \qquad -\infty < t < \infty,$$

denote the c.f. (characteristic function) of F(x). We suppose that

so that F(x) has mean 0 and standard deviation 1.

The d.f. $\tilde{F}_n(x)$ and the c.f. $\tilde{\phi}_n(x)$ of the sum $\xi_1 + \xi_2 + \cdots + \xi_n$ are such that $\tilde{\phi}_n(x) = [\phi(x)]^n$ and hence

$$[\phi(t)]^n = \int_{-\infty}^{\infty} e^{itx} d\tilde{F}_n(x).$$

The d.f. of the combination

(1.5)
$$\frac{\xi_1 + \xi_2 + \dots + \xi_n}{n^{1/2}}$$

is then $\tilde{F}_n(n^{1/2}x)$ and we denote this by $F_n(x)$. It's c.f. is $[\phi(n^{-1/2}t)]^n$, that is,

(1.51)
$$[\phi(n^{-1/2}t)]^n = \int_{-\infty}^{\infty} e^{itx} dF_n(x).$$

The hypotheses (1.3) imply that the formulas (1.3) hold when F(x) is replaced by $F_n(x)$. A special case of the central limit theorem asserts that, for each individual x in the interval $-\infty < x < \infty$,

(1.6)
$$\lim_{n\to\infty} F_n(x) = \Phi(x)$$

where $\Phi(x)$ is the Gaussian d.f. defined by

(1.61)
$$\Phi(x) = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{x} e^{-u^{2}/2} du.$$

For an exposition of the above facts, see Cramér [2].

Received January 17, 1955; revised August 20, 1956.

¹ This research was supported by the United States Air Force under Contract No. AF18 (600)-685 monitored by the Office of Scientific Research.